首页> 外文期刊>IEEE Transactions on Image Processing >Graph Sequence Recurrent Neural Network for Vision-Based Freezing of Gait Detection
【24h】

Graph Sequence Recurrent Neural Network for Vision-Based Freezing of Gait Detection

机译:基于视觉的远程检测的图序列序列序列序列性神经网络

获取原文
获取原文并翻译 | 示例

摘要

Freezing of gait (FoG) is one of the most common symptoms of Parkinsons disease (PD), a neurodegenerative disorder which impacts millions of people around the world. Accurate assessment of FoG is critical for the management of PD and to evaluate the efficacy of treatments. Currently, the assessment of FoG requires well-trained experts to perform time-consuming annotations via vision-based observations. Thus, automatic FoG detection algorithms are needed. In this study, we formulate vision-based FoG detection, as a fine-grained graph sequence modelling task, by representing the anatomic joints in each temporal segment with a directed graph, since FoG events can be observed through the motion patterns of joints. A novel deep learning method is proposed, namely graph sequence recurrent neural network (GS-RNN), to characterize the FoG patterns by devising graph recurrent cells, which take graph sequences of dynamic structures as inputs. For the cases of which prior edge annotations are not available, a data-driven based adjacency estimation method is further proposed. To the best of our knowledge, this is one of the first studies on vision-based FoG detection using deep neural networks designed for graph sequences of dynamic structures. Experimental results on more than 150 videos collected from 45 patients demonstrated promising performance of the proposed GS-RNN for FoG detection with an AUC value of 0.90.
机译:步态冻结(雾)是帕金森病(Pd)最常见的症状之一,一种影响全世界数百万人的神经变性疾病。精确评估雾对PD的管理至关重要,并评估治疗的疗效。目前,雾的评估需要训练有素的专家通过基于视觉的观察来执行耗时的注释。因此,需要自动雾检测算法。在这项研究中,通过在具有定向图的每个时间片段中代表每个时间段的解剖接头来制定基于视觉的雾检测,因为可以通过关节的运动模式观察到雾事件。提出了一种新的深度学习方法,即图表序列经常性神经网络(GS-RNN),通过设计曲线图复发细胞来表征雾图案,其将动态结构的图形序列作为输入。对于不可用先前边缘注释的情况,进一步提出了一种基于数据驱动的基于邻接估计方法。据我们所知,这是使用设计用于动态结构的图形序列的深神经网络的基于视觉雾检测的第一次研究之一。从45名患者收集的超过150个视频的实验结果表明了雾化检测所提出的GS-RNN的有希望的性能,AUC值为0.90。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号