首页> 外文期刊>IEEE Transactions on Image Processing >Multi-Task Consistency-Preserving Adversarial Hashing for Cross-Modal Retrieval
【24h】

Multi-Task Consistency-Preserving Adversarial Hashing for Cross-Modal Retrieval

机译:用于交叉模态检索的多任务一致性保留对抗散系

获取原文
获取原文并翻译 | 示例

摘要

Owing to the advantages of low storage cost and high query efficiency, cross-modal hashing has received increasing attention recently. As failing to bridge the inherent modality gap between modalities, most existing cross-modal hashing methods have limited capability to explore the semantic consistency information between different modality data, leading to unsatisfactory search performance. To address this problem, we propose a novel deep hashing method named Multi-Task Consistency-Preserving Adversarial Hashing (CPAH) to fully explore the semantic consistency and correlation between different modalities for efficient cross-modal retrieval. First, we design a consistency refined module (CR) to divide the representations of different modality into two irrelevant parts, i.e., modality-common and modality-private representations. Then, a multi-task adversarial learning module (MA) is presented, which can make the modality-common representation of different modalities close to each other on feature distribution and semantic consistency. Finally, the compact and powerful hash codes can be generated from modality-common representation. Comprehensive evaluations conducted on three representative cross-modal benchmark datasets illustrate our method is superior to the state-of-the-art cross-modal hashing methods.
机译:由于储存成本低,查询效率高的优点,跨模态散列最近受到了越来越长的关注。由于无法介绍模态之间的固有模态差距,大多数现有的跨模型散列方法具有有限的能力,可以探讨不同模态数据之间的语义一致性信息,从而导致不令人满意的搜索性能。为了解决这个问题,我们提出了一种名为多任务一致性保留对抗散列(CPAH)的新型深度散列方法,以完全探索不同模式之间的语义一致性和相关性以实现高效的跨模型检索。首先,我们设计一个一致性精细模块(CR),将不同的模型的表示分为两个无关紧要的部分,即模态 - 常见和模态私有表示。然后,提出了一种多任务对抗性学习模块(MA),其可以在特征分布和语义一致性上使不同模式的不同模式的常见表示。最后,可以从模态 - 常见的表示生成紧凑且强大的哈希代码。在三个代表性跨模型基准数据集中进行的综合评估说明了我们的方法优于最先进的跨模态散列方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号