首页> 外文期刊>IEEE Transactions on Image Processing >Efficient Single-Stage Pedestrian Detector by Asymptotic Localization Fitting and Multi-Scale Context Encoding
【24h】

Efficient Single-Stage Pedestrian Detector by Asymptotic Localization Fitting and Multi-Scale Context Encoding

机译:通过渐近定位拟合和多尺度上下文编码有效的单级步行检测器

获取原文
获取原文并翻译 | 示例

摘要

Though Faster R-CNN based two-stage detectors have witnessed significant boost in pedestrian detection accuracy, they are still slow for practical applications. One solution is to simplify this working flow as a single-stage detector. However, current single-stage detectors (e.g. SSD) have not presented competitive accuracy on common pedestrian detection benchmarks. Accordingly, a structurally simple but effective module called Asymptotic Localization Fitting (ALF) is proposed, which stacks a series of predictors to directly evolve the default anchor boxes of SSD step by step to improve detection results. Additionally, combining the advantages from residual learning and multi-scale context encoding, a bottleneck block is proposed to enhance the predictors' discriminative power. On top of the above designs, an efficient single-stage detection architecture is designed, resulting in an attractive pedestrian detector in both accuracy and speed. A comprehensive set of experiments on two of the largest pedestrian detection datasets (i.e. CityPersons and Caltech) demonstrate the superiority of the proposed method, comparing to the state of the arts on both the benchmarks.
机译:虽然基于R-CNN的两级探测器的速度较快,但在行人检测精度下有显着提升,但它们对实际应用仍然缓慢。一种解决方案是将该工作流简化为单级探测器。然而,目前的单级探测器(例如SSD)在共同的行人检测基准上没有呈现竞争准确性。因此,提出了一种具有名为渐近定位拟合(ALF)的结构简单但有效的模块,其堆叠一系列预测器,以直接演化SSD的默认锚盒,以提高检测结果。另外,组合从残余学习和多尺度上下文编码的优点,提出了一种瓶颈块来增强预测器的鉴别力。在上述设计之上,设计了一种有效的单级检测架构,可实现精度和速度的有吸引力的行人检测器。一套全面的两种实验,两个最大的行人检测数据集(即CityPersonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonson)展示了所提出的方法的优势,与基准测试的技术相比。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2020年第2020期|1413-1425|共13页
  • 作者单位

    Natl Univ Def Technol Coll Elect Sci Natl Key Lab Sci & Technol ATR Changsha 410073 Hunan Peoples R China|Chinese Acad Sci Ctr Biometr & Secur Res Beijing 100190 Peoples R China|Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100190 Peoples R China;

    Incept Inst Artificial Intelligence Abu Dhabi U Arab Emirates;

    Natl Univ Def Technol Coll Elect Sci Natl Key Lab Sci & Technol ATR Changsha 410073 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pedestrian detection; convolutional neural networks; asymptotic localization fitting;

    机译:行人检测;卷积神经网络;渐近定位配件;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号