首页> 外文期刊>IEEE Transactions on Image Processing >High-Resolution Encoder–Decoder Networks for Low-Contrast Medical Image Segmentation
【24h】

High-Resolution Encoder–Decoder Networks for Low-Contrast Medical Image Segmentation

机译:低对比度医学图像分割的高分辨率编码器 - 解码器网络

获取原文
获取原文并翻译 | 示例

摘要

Automatic image segmentation is an essential step for many medical image analysis applications, include computer-aided radiation therapy, disease diagnosis, and treatment effect evaluation. One of the major challenges for this task is the blurry nature of medical images (e.g., CT, MR, and microscopic images), which can often result in low-contrast and vanishing boundaries. With the recent advances in convolutional neural networks, vast improvements have been made for image segmentation, mainly based on the skip-connection-linked encoder-decoder deep architectures. However, in many applications (with adjacent targets in blurry images), these models often fail to accurately locate complex boundaries and properly segment tiny isolated parts. In this paper, we aim to provide a method for blurry medical image segmentation and argue that skip connections are not enough to help accurately locate indistinct boundaries. Accordingly, we propose a novel high-resolution multi-scale encoder-decoder network (HMEDN), in which multi-scale dense connections are introduced for the encoder-decoder structure to finely exploit comprehensive semantic information. Besides skip connections, extra deeply supervised high-resolution pathways (comprised of densely connected dilated convolutions) are integrated to collect high-resolution semantic information for accurate boundary localization. These pathways are paired with a difficulty-guided cross-entropy loss function and a contour regression task to enhance the quality of boundary detection. The extensive experiments on a pelvic CT image dataset, a multi-modal brain tumor dataset, and a cell segmentation dataset show the effectiveness of our method for 2D/3D semantic segmentation and 2D instance segmentation, respectively. Our experimental results also show that besides increasing the network complexity, raising the resolution of semantic feature maps can largely affect the overall model performance. For different tasks, finding a balance between these two factors can further improve the performance of the corresponding network.
机译:自动图像分割是许多医学图像分析应用的重要步骤,包括计算机辅助放射治疗,疾病诊断和治疗效果评估。这项任务的主要挑战之一是医学图像的模糊性质(例如,CT,MR和微观图像),其通常可能导致低对比度和消失的边界。随着卷积神经网络的最新进展,对图像分割进行了巨大的改进,主要基于跳过连接链接的编码器解码器深度架构。然而,在许多应用中(使用模糊图像中的相邻目标),这些模型通常无法准确地定位复杂的边界和正确分段微小的分隔部分。在本文中,我们的目的是为模糊的医学图像分割提供一种方法,并且争论跳过连接不足以帮助准确定位模糊的边界。因此,我们提出了一种新的高分辨率多尺度编码器 - 解码器网络(HMEDN),其中引入了用于对编码器解码器结构进行精细利用综合语义信息的多尺度密集连接。除了跳过连接外,还集成了额外的深度监督的高分辨率路径(包括密集连接的卷积),以收集用于准确边界定位的高分辨率语义信息。这些途径与难以引导的跨熵损失函数和轮廓回归任务配对,以增强边界检测的质量。在盆腔CT图像数据集,多模态脑肿瘤数据集和小区分割数据集上的广泛实验显示了我们对2D / 3D语义分割和2D实例分段的方法的有效性。我们的实验结果还表明,除了增加网络复杂性外,提高语义特征图的分辨率可能在很大程度上影响整体模型性能。对于不同的任务,在这两个因素之间找到平衡可以进一步提高相应网络的性能。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2020年第2020期|461-475|共15页
  • 作者单位

    Natl Univ Def Technol Sch Comp Changsha 410073 Hunan Peoples R China|Univ N Carolina Dept Radiol Chapel Hill NC 27599 USA|Univ N Carolina Biomed Res Imaging Ctr Chapel Hill NC 27599 USA;

    Univ N Carolina Dept Radiol Chapel Hill NC 27599 USA|Univ N Carolina Biomed Res Imaging Ctr Chapel Hill NC 27599 USA|Univ N Carolina Dept Comp Sci Chapel Hill NC 27599 USA;

    Stanford Univ Dept Psychiat & Behav Sci Stanford CA 94305 USA|Stanford Univ Dept Comp Sci Stanford CA 94305 USA;

    Dongguan Univ Technol Sch Cyberspace Sci Dongguan 523808 Guangdong Peoples R China;

    Univ N Carolina Dept Radiat Oncol Chapel Hill NC 27599 USA;

    Univ N Carolina Dept Radiol Chapel Hill NC 27599 USA|Univ N Carolina Biomed Res Imaging Ctr Chapel Hill NC 27599 USA|Korea Univ Dept Brain & Cognit Engn Seoul 02841 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image segmentation; Semantics; Task analysis; Computed tomography; Shape; Medical diagnostic imaging; Image segmentation; low-contrast image; high-resolution pathway;

    机译:图像分割;语义;任务分析;计算断层扫描;形状;医学诊断成像;图像分割;低对比度图像;高分辨率途径;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号