首页> 外文期刊>IEEE Transactions on Image Processing >Edge-Sensitive Human Cutout With Hierarchical Granularity and Loopy Matting Guidance
【24h】

Edge-Sensitive Human Cutout With Hierarchical Granularity and Loopy Matting Guidance

机译:边缘敏感的人力切口,具有层次粒度和疏松垫垫

获取原文
获取原文并翻译 | 示例

摘要

Human parsing and matting play important roles in various applications, such as dress collocation, clothing recommendation, and image editing. In this paper, we propose a lightweight hybrid model that unifies the fully-supervised hierarchical-granularity parsing task and the unsupervised matting one. Our model comprises two parts, the extensible hierarchical semantic segmentation block using CNN and the matting module composed of guided filters. Given a human image, the segmentation block stage-1 first obtains a primitive segmentation map to separate the human and the background. The primitive segmentation is then fed into stage-2 together with the original image to give a rough segmentation of human body. This procedure is repeated in the stage-3 to acquire a refined segmentation. The matting module takes as input the above estimated segmentation maps and produces the matting map, in a fully unsupervised manner. The obtained matting map is then in turn fed back to the CNN in the first block for refining the semantic segmentation results.
机译:人类解析和消光在各种应用中起重要作用,如服装搭配,服装推荐和图像编辑。在本文中,我们提出了一种轻量级混合模型,统一了完全监督的分层粒度解析任务和无监督的消光器。我们的模型包括两个部分,使用CNN和由引导滤波器组成的消光模块的可扩展分层语义分段块。给定人类图像,分割块阶段-1首先获得基元分割图以分离人和背景。然后将原始分段与原始图像一起进入阶段-2,以产生人体的粗糙分割。在第3阶段重复该过程以获取精致的分割。消光模块以完全无监督的方式输入上述分割图并产生消光图。然后,所获得的掩模图反转回到第一块中的CNN,用于精制语义分段结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号