首页> 外文期刊>IEEE Transactions on Image Processing >Simultaneous Feature Aggregating and Hashing for Compact Binary Code Learning
【24h】

Simultaneous Feature Aggregating and Hashing for Compact Binary Code Learning

机译:紧凑型二进制代码学习的同时特征聚合和哈希处理

获取原文
获取原文并翻译 | 示例

摘要

Representing images by compact hash codes is an attractive approach for large-scale content-based image retrieval. In most state-of-the-art hashing-based image retrieval systems, for each image, local descriptors are first aggregated as a global representation vector. This global vector is then subjected to a hashing function to generate a binary hash code. In previous works, the aggregating and the hashing processes are designed independently. Hence, these frameworks may generate suboptimal hash codes. In this paper, we first propose a novel unsupervised hashing framework in which feature aggregating and hashing are designed simultaneously and optimized jointly. Specifically, our joint optimization generates aggregated representations that can be better reconstructed by some binary codes. This leads to more discriminative binary hash codes and improved retrieval accuracy. In addition, the proposed method is flexible. It can be extended for supervised hashing. When the data label is available, the framework can be adapted to learn binary codes which minimize the reconstruction loss with respect to label vectors. Furthermore, we also propose a fast version of the state-of-the-art hashing method Binary Autoencoder to be used in our proposed frameworks. Extensive experiments on benchmark datasets under various settings show that the proposed methods outperform the state-of-the-art unsupervised and supervised hashing methods.
机译:用紧凑的哈希码表示图像对于大规模的基于内容的图像检索是一种有吸引力的方法。在大多数最新的基于散列的图像检索系统中,对于每个图像,首先将局部描述符聚合为全局表示向量。然后,对该全局向量进行哈希处理以生成二进制哈希码。在以前的工作中,聚合和哈希处理是独立设计的。因此,这些框架可能会生成次优哈希码。在本文中,我们首先提出了一种新颖的无监督哈希框架,该框架中同时设计了特征聚合和哈希并共同进行了优化。具体来说,我们的联合优化可以生成聚合表示,可以通过一些二进制代码更好地对其进行重构。这导致更具区别性的二进制哈希码并提高了检索精度。另外,所提出的方法是灵活的。它可以扩展为监督哈希。当数据标签可用时,该框架可以适合于学习二进制代码,从而最大程度地减少标签矢量的重构损失。此外,我们还提出了一种最新版本的哈希方法Binary Autoencoder的快速版本,该方法将在我们提出的框架中使用。在各种设置下对基准数据集进行的大量实验表明,所提出的方法优于最新的无监督和有监督的哈希方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号