首页> 外文期刊>IEEE Transactions on Image Processing >Dense Dilated Network for Video Action Recognition
【24h】

Dense Dilated Network for Video Action Recognition

机译:密集扩张网络的视频动作识别

获取原文
获取原文并翻译 | 示例

摘要

The ability to recognize actions throughout a video is essential for surveillance, self-driving, and many other applications. Although many researchers have investigated deep neural networks to get a better result in video action recognition, these networks usually require a large number of well-labeled data to train. In this paper, we introduce a dense dilated network to collect action information from snippet-level to global-level. The dilated dense network is composed of the blocks with densely connected dilated convolutions layers. Our proposed framework is capable of fusing outputs from each layer to learn high-level representations, and these representations are robust even with only a few training snippets. We study different spatial and temporal modality fusing configurations and introduce a novel temporal guided fusion upon the dense dilated network which can further boost the performance. We conduct extensive experiments on two popular video action datasets: UCF101 and HMDB51. The experiments demonstrate the effectiveness of our proposed framework.
机译:识别整个视频中的动作的能力对于监视,自动驾驶和许多其他应用至关重要。尽管许多研究人员已经对深度神经网络进行了研究,以获得更好的视频动作识别结果,但这些网络通常需要大量标记良好的数据进行训练。在本文中,我们引入了一个密集的扩张网络来收集从代码段级别到全局级别的动作信息。扩张的密集网络由具有密集连接的扩张卷积层的块组成。我们提出的框架能够融合每一层的输出以学习高级表示,并且即使只有几个训练摘要,这些表示也很健壮。我们研究了不同的时空模态融合配置,并在密集的扩张网络上引入了一种新颖的时空导引融合,可以进一步提高性能。我们对两个流行的视频动作数据集UCF101和HMDB51进行了广泛的实验。实验证明了我们提出的框架的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号