首页> 外文期刊>IEEE Transactions on Image Processing >Two-Level Attention Network With Multi-Grain Ranking Loss for Vehicle Re-Identification
【24h】

Two-Level Attention Network With Multi-Grain Ranking Loss for Vehicle Re-Identification

机译:具有多谷物排名损失的两级注意力网络,用于车辆重新识别

获取原文
获取原文并翻译 | 示例

摘要

Vehicle re-identification (re-ID) aims to identify the same vehicle across multiple non-overlapping cameras, which is rather a challenging task. On the one hand, subtle changes in viewpoint and illumination condition can make the same vehicle look much different. On the other hand, different vehicles, even different vehicle models, may look quite similar. In this paper, we propose a novel Two-level Attention network supervised by a Multi-grain Ranking loss (TAMR) to learn an efficient feature embedding for the vehicle re-ID task. The two-level attention network consisting of hard part-level attention and soft pixel-level attention can adaptively extract discriminative features from the visual appearance of vehicles. The former one is designed to localize the salient vehicle parts, such as windscreen and car head. The latter one gives an additional attention refinement at pixel level to focus on the distinctive characteristics within each part. In addition, we present a multi-grain ranking loss to further enhance the discriminative ability of learned features. We creatively take the multi-grain relationship between vehicles into consideration. Thus, not only the discrimination between different vehicles but also the distinction between different vehicle models is constrained. Finally, the proposed network can learn a feature space, where both intra-class compactness and interclass discrimination are well guaranteed. Extensive experiments demonstrate the effectiveness of our approach and we achieve state-of-the-art results on two challenging datasets, including VehicleID and Vehicle-1M.
机译:车辆重新识别(re-ID)旨在跨多个不重叠的摄像机识别同一辆车辆,这是一项艰巨的任务。一方面,视点和照明条件的细微变化可以使同一辆车看起来大不相同。另一方面,不同的车辆,甚至不同的车辆型号,看起来也可能非常相似。在本文中,我们提出了一种新颖的两级注意力网络,该网络由多粒度排名损失(TAMR)监督,以学习用于车辆重新ID任务的有效特征嵌入。由硬零件级注意力和软像素级注意力组成的两级注意力网络可以自适应地从车辆的视觉外观中提取判别特征。前一种设计用于定位重要的汽车部件,例如挡风玻璃和汽车头部。后者在像素级别上提供了额外的关注点改进,以专注于每个部分内的独特特性。另外,我们提出了多粒度排名损失,以进一步增强学习特征的判别能力。我们创造性地考虑了车辆之间的多重关系。因此,不仅限制了不同车辆之间的区别,而且限制了不同车辆模型之间的区别。最后,提出的网络可以学习一个特征空间,可以很好地保证类内部的紧凑性和类间的区别。大量的实验证明了我们方法的有效性,并且我们在两个具有挑战性的数据集(包括VehicleID和Vehicle-1M)上获得了最新的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号