首页> 外文期刊>IEEE Transactions on Image Processing >Enhanced Motion-Compensated Video Coding With Deep Virtual Reference Frame Generation
【24h】

Enhanced Motion-Compensated Video Coding With Deep Virtual Reference Frame Generation

机译:具有深度虚拟参考帧生成功能的增强型运动补偿视频编码

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an efficient inter prediction scheme by introducing the deep virtual reference frame (VRF), which serves better reference in the temporal redundancy removal process of video coding. In particular, the high quality VRF is generated with the deep learning-based frame rate up conversion (FRUC) algorithm from two reconstructed bi-directional frames, which is subsequently incorporated into the reference list serving as the high quality reference. Moreover, to alleviate the compression artifacts of VRF, we develop a convolutional neural network (CNN)-based enhancement model to further improve its quality. To facilitate better utilization of the VRF, a CTU level coding mode termed as direct virtual reference frame (DVRF) is devised, which achieves better trade-off between compression performance and complexity. The proposed scheme is integrated into HM-16.6 and JEM-7.1 software platforms, and the simulation results under random access (RA) configuration demonstrate significant superiority of the proposed method. When adding VRF to RPS, more than 6% average BD-rate gain is achieved for HEVC test sequences on HM-16.6, and 0.8% BD-rate gain is observed based on JEM-7.1 software. Regarding the DVRF mode, 3.6% bitrate saving is achieved on HM-16.6 with the computational complexity effectively reduced.
机译:在本文中,我们通过引入深度虚拟参考帧(VRF)提出了一种有效的帧间预测方案,该方案可在视频编码的时间冗余去除过程中提供更好的参考。特别是,通过基于深度学习的帧速率上转换(FRUC)算法,从两个重构的双向帧中生成了高质量的VRF,随后将其合并到用作高质量参考的参考列表中。此外,为了减轻VRF的压缩伪影,我们开发了基于卷积神经网络(CNN)的增强模型以进一步提高其质量。为了促进更好地利用VRF,设计了一种称为直接虚拟参考帧(DVRF)的CTU级编码模式,该模式可以在压缩性能和复杂性之间取得更好的平衡。该方案被集成到HM-16.6和JEM-7.1软件平台中,随机访问(RA)配置下的仿真结果证明了该方法的显着优势。当将VRF添加到RPS时,HM-16.6上的HEVC测试序列获得了超过6%的平均BD速率增益,并且基于JEM-7.1软件观察到BD速率增益为0.8%。关于DVRF模式,HM-16.6可以节省3.6%的比特率,并有效降低了计算复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号