首页> 外文期刊>IEEE Transactions on Image Processing >Magic-Wall: Visualizing Room Decoration by Enhanced Wall Segmentation
【24h】

Magic-Wall: Visualizing Room Decoration by Enhanced Wall Segmentation

机译:魔墙:通过增强的墙分割可视化房间装饰

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an intelligent system named Magic-wall, which enables visualization of the effect of room decoration automatically. Concretely, given an image of the indoor scene and a preferred color, the Magic-wall can automatically locate the wall regions in the image and smoothly replace the existing wall with the required one. The key idea of the proposed Magic-wall is to leverage visual semantics to guide the entire process of color substitution, including wall segmentation and replacement. To strengthen the reality of visualization, we make the following contributions. First, we propose an edge-aware fully convolutional neural network (Edge-aware-FCN) for indoor semantic scene parsing, in which a novel edge-prior branch is introduced to identify the boundary of different semantic regions better. To further polish the details between the wall and other semantic regions, we leverage the output of Edge-aware-FCN as the prior knowledge, concatenating with the image to form a new input for the Enhanced-Net. In such a case, the Enhanced-Net is able to capture more semantic-aware information from the input and polish some ambiguous regions. Finally, to naturally replace the color of the original walls, a simple yet effective color space conversion method is proposed for replacement with brightness reserved. We build a new indoor scene dataset upon ADE20K for training and testing, which includes six semantic labels. Extensive experimental evaluations and visualizations well demonstrate that the proposed Magic-wall is effective and can automatically generate a set of visually pleasing results.
机译:本文提出了一个名为Magic-wall的智能系统,该系统可以自动可视化房间装饰的效果。具体地,给定室内场景的图像和首选的颜色,魔墙可以自动定位图像中的墙区域,并用所需的墙平稳地替换现有的墙。拟议的Magic-wall的关键思想是利用视觉语义来指导整个颜色替换过程,包括墙壁分割和替换。为了增强可视化的现实性,我们做出了以下贡献。首先,我们提出了一种用于室内语义场景解析的边缘感知全卷积神经网络(Edge-aware-FCN),其中引入了一种新颖的边缘优先分支来更好地识别不同语义区域的边界。为了进一步完善墙与其他语义区域之间的细节,我们利用Edge-ware-FCN的输出作为先验知识,并将其与图像连接起来,形成增强网的新输入。在这种情况下,增强型网络可以从输入中捕获更多的语义感知信息,并抛光一些模糊区域。最后,为了自然地替换原始墙壁的颜色,提出了一种简单而有效的颜色空间转换方法来替换保留的亮度。我们在ADE20K上构建了一个用于训练和测试的新室内场景数据集,其中包括六个语义标签。大量的实验评估和可视化效果很好地证明了所提出的Magic-wall是有效的,并且可以自动生成一组视觉上令人愉悦的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号