首页> 外文期刊>IEEE Transactions on Image Processing >Similarity Domains Machine for Scale-Invariant and Sparse Shape Modeling
【24h】

Similarity Domains Machine for Scale-Invariant and Sparse Shape Modeling

机译:用于尺度不变和稀疏形状建模的相似域机器

获取原文
获取原文并翻译 | 示例

摘要

We present an approach to extend the functionality and the use of kernel machines in image processing applications. We introduce a novel way to design spatial kernel machines with spatial properties and demonstrate how those newly introduced spatial properties enhance the possibilities of the use of kernel machines in image processing applications as a proof of concept. In this paper, we demonstrate four particular extensions: 1) how to model shapes efficiently with spatially computed kernel parameters in a geometrically scalable way; 2) how to visualize the kernel parameters precisely and intuitively on binary 2D shapes; 3) how to construct a one-class classifier from the binary classifier in a straightforward manner without re-training; and 4) how to use the computed kernel parameters for filtering. The existing literature on kernel machines mostly focuses on estimating the optimal kernel parameters via additional cost function(s). In this paper, instead of employing an additional cost function to estimate the kernel-related parameters, we investigate on an analytical solution to predict the actual kernel parameters locally and show how to build a spatial kernel machine with our analytical approach. Classical kernel machines do not perform well on precise shape modeling with a low number of support vectors as demonstrated in this paper. However, we demonstrate and visualize that our analytical approach provides a natural means to relate the kernel parameters to the 2D shapes for sparse shape modeling, where the shape boundary represents the decision boundary. For that, we incorporate the selected kernel function's geometric properties as an additional constraint into the classifier's optimization problem by defining an easy-to-explain and intuitive concept: similarity domains. In our experiments, we study and demonstrate how the resulting new kernel machine enhances the capabilities of the classical kernel machines with applications on shape modeling, (geometrically) scaling the non-linear decision boundary at various scales and precise visualization of the kernel parameters in 2D images.
机译:我们提出了一种扩展功能和在图像处理应用程序中使用内核机器的方法。我们介绍一种设计具有空间特性的空间内核机器的新颖方法,并演示那些新引入的空间特性如何增强在图像处理应用程序中使用内核机器的可能性,以此作为概念证明。在本文中,我们展示了四个特定的扩展:1)如何使用空间可计算的核参数以几何可缩放的方式有效地对形状建模; 2)如何在二进制2D形状上精确直观地显示内核参数; 3)如何在不进行重新训练的情况下直接从二进制分类器构造一个一类分类器; 4)如何使用计算出的内核参数进行过滤。有关内核机器的现有文献主要集中在通过附加成本函数估算最佳内核参数。在本文中,我们没有采用额外的成本函数来估计与内核相关的参数,而是研究了一种解析解决方案来局部预测实际的内核参数,并展示了如何使用我们的分析方法来构建空间内核机器。如本文所示,经典的内核计算机在具有少量支持向量的精确形状建模上不能表现良好。但是,我们证明并可视化了我们的分析方法提供了一种自然的方法,可以将内核参数与2D形状相关联以进行稀疏形状建模,其中形状边界代表决策边界。为此,我们通过定义一个易于解释和直观的概念:相似性域,将所选内核函数的几何特性作为附加约束纳入分类器的优化问题。在我们的实验中,我们研究并证明了最终的新型内核机器如何通过形状建模,(在几何上)缩放各种尺度的非线性决策边界以及在2D模式下精确显示内核参数来增强经典内核机器的功能。图片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号