首页> 外文期刊>IEEE Transactions on Image Processing >Weighted Graph Embedding-Based Metric Learning for Kinship Verification
【24h】

Weighted Graph Embedding-Based Metric Learning for Kinship Verification

机译:基于加权图嵌入的度量学习以进行亲缘关系验证

获取原文
获取原文并翻译 | 示例

摘要

Given a group photograph, it is interesting and useful to judge whether the characters in it share specific kinship relation, such as father-daughter, father-son, mother-daughter, or mother-son. Recently, facial image-based kinship verification has attracted wide attention in computer vision. Some metric learning algorithms have been developed for improving kinship verification. However, most of the existing algorithms ignore fusing multiple feature representations and utilizing kernel techniques. In this paper, we develop a novel weighted graph embedding-based metric learning (WGEML) framework for kinship verification. Inspired by the fact that family members usually show high similarity in facial features like eyes, noses, and mouths, despite their diversity, we jointly learn multiple metrics by constructing an intrinsic graph and two penalty graphs to characterize the intraclass compactness and interclass separability for each feature representation, respectively, so that both the consistency and complementarity among multiple features can be fully exploited. Meanwhile, combination weights are determined through a weighted graph embedding framework. Furthermore, we present a kernelized version of WGEML to tackle nonlinear problems. Experimental results demonstrate both the effectiveness and efficiency of our proposed methods.
机译:给定一张集体照,判断其中的角色是否具有特定的亲属关系是很有意思且有用的,例如父女,父子,母女或母子。最近,基于面部图像的亲缘关系验证已在计算机视觉中引起了广泛关注。已经开发了一些度量学习算法来改善亲属关系验证。但是,大多数现有算法都忽略了融合多个特征表示和利用内核技术的问题。在本文中,我们开发了一种新颖的基于加权图嵌入的度量学习(WGEML)框架,用于亲缘关系验证。受家庭成员通常尽管表情多样而通常在其面部特征(如眼睛,鼻子和嘴巴)上表现出高度相似这一事实的启发,我们通过构造一个内在图和两个惩罚图来共同学习多个度量标准,以表征每个人的类内紧密度和类间可分离性分别表示特征,以便可以充分利用多个特征之间的一致性和互补性。同时,组合权重是通过加权图嵌入框架确定的。此外,我们提出了WGEML的内核版本来解决非线性问题。实验结果证明了我们提出的方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号