首页> 外文期刊>IEEE Transactions on Green Communications and Networking >Battery-Aware Optimization of Green Small Cells: Sizing and Energy Management
【24h】

Battery-Aware Optimization of Green Small Cells: Sizing and Energy Management

机译:绿色小型电池的电池感知优化:尺寸调整和能量管理

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the concerns about climate change, energy-harvesting technologies have recently gained particular interest to support the growing power demand of cellular networks. The environment-friendly power sources coupled with batteries enable to significantly reduce carbon emissions as well as the electricity bill of mobile network operators (MNOs). However, incautious battery usages can heavily damage the storage capabilities and require large expenses for the battery replacement. To investigate this tradeoff, we propose an energy management framework for a small cell powered by renewable energy, a battery, and the smart grid. First, we develop an approach that accounts for the battery aging to determine the optimal system sizing. Then, we design an energy controller, based on reinforcement-learning, which supervises the battery state in order to minimize the electricity expenditures of the MNO while enhancing the battery life span. Simulations show that the proposed solution achieves considerable cost reduction compared to a classical Kalman filter-based method proposed in the literature and performs very closely to the ideal strategy able to perfectly predict the state of the stochastic variables. Moreover, simulation results indicate that 30% of the battery life span can be saved each year by implementing the proposed solution.
机译:出于对气候变化的关注,能量收集技术最近引起了人们的特别兴趣,以支持蜂窝网络不断增长的功率需求。环保的电源与电池相结合,可以显着减少碳排放以及移动网络运营商(MNO)的电费。但是,电池使用不当会严重损害存储能力,并需要大量的电池更换费用。为了研究这种折衷方案,我们提出了一种由可再生能源,电池和智能电网供电的小型电池的能源管理框架。首先,我们开发一种解决电池老化问题的方法,以确定最佳的系统尺寸。然后,我们基于增强型学习设计了一种能量控制器,该控制器可监控电池状态,以最大程度地减少MNO的电力消耗,同时延长电池寿命。仿真表明,与文献中提出的基于经典卡尔曼滤波器的方法相比,提出的解决方案可显着降低成本,并且与能够完美预测随机变量状态的理想策略非常接近。此外,仿真结果表明,通过实施所提出的解决方案,每年可以节省30%的电池寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号