首页> 外文期刊>IEEE Transactions on Green Communications and Networking >Energy-Optimal Dynamic Computation Offloading for Industrial IoT in Fog Computing
【24h】

Energy-Optimal Dynamic Computation Offloading for Industrial IoT in Fog Computing

机译:雾化计算工业物联网的能源最优动态计算卸载

获取原文
获取原文并翻译 | 示例

摘要

Fog computing is emerging as a promising mode to meet the stringent requirement of low latency in industrial Internet of Things (IIoT). By dynamically offloading part of the computation-intensive tasks from a fog node to a cloud server, the computation experience of users can be further improved in fog computing systems. In this paper, we develop an energy-optimal dynamic computation offloading scheme (EDCO) for IIoT in a fog computing scenario. The purpose is to minimize energy consumption when computation tasks are accomplished within a desired energy overhead and delay. Specifically, we first formulate an energy minimization computation offloading problem with delay, energy and other network resource constraints. To address this optimization problem, an accelerated gradient algorithm with joint optimization of the offloading ratio and transmission time is proposed; it can find the optimal value with a fast speed that improves the convergence speed of traditional methods. Subsequently, to better meet the stringent energy and latency requirements of IIoT applications, the dynamic voltage scaling (DVS) technique is integrated into the above solution, and we develop an alternating minimization algorithm to achieve energy-optimal fog computation offloading by jointly optimizing the offloading ratio, transmission power, local CPU computation speed and transmission time. Finally, the numerical results reveal that the proposed offloading scheme is superior to the local computing, full offloading and partial offloading with fixed computation speed schemes in terms of energy consumption and completion time. We also confirm the convergence rate advantage of the accelerated algorithm.
机译:雾计算是作为一个有希望的模式,以满足工业互联网(IIOT)的严格要求。通过将从FOG节点的计算密集型任务动态卸载到云服务器,可以在雾计算系统中进一步提高用户的计算体验。在本文中,我们在雾计算场景中为IIOT开发了一种能量最优动态计算卸载方案(EDCO)。当在期望的能量开销和延迟内完成计算任务时,该目的是最小化能量消耗。具体地,我们首先用延迟,能量和其他网络资源约束制定能量最小化计算卸载问题。为了解决这种优化问题,提出了一种加速梯度算法,具有卸载比和传输时间的关节优化;它可以找到最佳值,快速速度提高了传统方法的收敛速度。随后,为了更好地满足IIOT应用的严格能量和潜伏要求,动态电压缩放(DVS)技术集成到上述解决方案中,我们开发了一个交替的最小化算法,通过联合优化卸载来实现能量最佳雾计算卸载比率,传输功率,局部CPU计算速度和传输时间。最后,数值结果表明,在能量消耗和完成时间方面,所提出的卸载方案优于本地计算,全面卸载和与固定计算速度方案的部分卸载。我们还确认了加速算法的收敛速率优势。

著录项

  • 来源
  • 作者单位

    Jiangsu Key Lab of Broadband Wireless Communication and Internet of Things and the Jiangsu Engineering Research Center of Communication and Network Technology Nanjing University of Posts and Telecommunications Nanjing China;

    Jiangsu Key Lab of Broadband Wireless Communication and Internet of Things and the Jiangsu Engineering Research Center of Communication and Network Technology Nanjing University of Posts and Telecommunications Nanjing China;

    Jiangsu Key Lab of Broadband Wireless Communication and Internet of Things and the Jiangsu Engineering Research Center of Communication and Network Technology Nanjing University of Posts and Telecommunications Nanjing China;

    School of Computing Science and Engineering VIT University Chennai India;

    Department of Electrical and Computer Engineering University of California Los Angeles CA USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Task analysis; Energy consumption; Optimization; Delays; Edge computing; Convergence;

    机译:任务分析;能量消耗;优化;延迟;边缘计算;收敛;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号