首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform
【24h】

Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform

机译:通过噪声调整后的主分量变换来增强高光谱分辨率的遥感数据

获取原文
获取原文并翻译 | 示例

摘要

High-spectral-resolution remote-sensing data are first transformed so that the noise covariance matrix becomes the identity matrix. Then the principal components transform is applied. This transform is equivalent to the maximum noise fraction transform and is optimal in the sense that it maximizes the signal-to-noise ratio (SNR) in each successive transform component, just as the principal component transform maximizes the data variance in successive components. Application of this transform requires knowledge or an estimate of the noise covariance matrix of the data. The effectiveness of this transform for noise removal is demonstrated in both the spatial and spectral domains. Results that demonstrate the enhancement of geological mapping and detection of alteration mineralogy in data from the Pilbara region of Western Australia, including mapping of the occurrence of pyrophyllite over an extended area, are presented.
机译:首先对高光谱分辨率的遥感数据进行转换,以使噪声协方差矩阵成为恒等矩阵。然后应用主成分变换。此变换等效于最大噪声分数变换,并且在使每个连续变换分量中的信噪比(SNR)最大化的意义上是最佳的,就像主分量变换使连续分量中的数据方差最大化一样。要应用此变换,需要了解或估计数据的噪声协方差矩阵。在空间域和频谱域中都证明了该变换对噪声去除的有效性。提出的结果证明了西澳大利亚州皮尔巴拉地区的数据中地质图谱的增强和变化矿物学的检测,包括在扩展区域上绘制叶蜡石的地图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号