首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach
【24h】

Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach

机译:高光谱图像分类和降维:正交子空间投影方法

获取原文
获取原文并翻译 | 示例

摘要

Most applications of hyperspectral imagery require processing techniques which achieve two fundamental goals: 1) detect and classify the constituent materials for each pixel in the scene; 2) reduce the data volume/dimensionality, without loss of critical information, so that it can be processed efficiently and assimilated by a human analyst. The authors describe a technique which simultaneously reduces the data dimensionality, suppresses undesired or interfering spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel vector onto a subspace which is orthogonal to the undesired signatures. This operation is an optimal interference suppression process in the least squares sense. Once the interfering signatures have been nulled, projecting the residual onto the signature of interest maximizes the signal-to-noise ratio and results in a single component image that represents a classification for the signature of interest. The orthogonal subspace projection (OSP) operator can be extended to k-signatures of interest, thus reducing the dimensionality of k and classifying the hyperspectral image simultaneously. The approach is applicable to both spectrally pure as well as mixed pixels.
机译:高光谱图像的大多数应用都需要达到以下两个基本目标的处理技术:1)对场景中每个像素的构成材料进行检测和分类; 2)减少数据量/维度,而不会丢失关键信息,以便可以有效地处理数据并由分析人员吸收。作者描述了一种技术,该技术可同时降低数据维数,抑制不希望的或干扰的光谱特征,并检测目标光谱特征的存在。基本概念是将每个像素向量投影到与不想要的签名正交的子空间上。在最小二乘意义上,此操作是最佳干扰抑制过程。一旦干扰签名已为零,将残差投影到感兴趣的签名上将使信噪比最大化,并得到一个代表感兴趣签名分类的单个成分图像。正交子空间投影(OSP)运算符可以扩展到感兴趣的k个签名,从而减小k的维数并同时对高光谱图像进行分类。该方法适用于光谱纯像素和混合像素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号