首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A neural network for unsupervised categorization of multivalued input patterns: an application to satellite image clustering
【24h】

A neural network for unsupervised categorization of multivalued input patterns: an application to satellite image clustering

机译:用于多值输入模式无监督分类的神经网络:在卫星图像聚类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Presents an implementation of an artificial neural network (ANN) which performs unsupervised detection of recognition categories from arbitrary sequences of multivalued input patterns. The proposed ANN is called Simplified Adaptive Resonance Theory Neural Network (SARTNN). First, an Improved Adaptive Resonance Theory 1 (IART1)-based neural network for binary pattern analysis is discussed and a Simplified ART1 (SART1) model is proposed. Second, the SART1 model is extended to multivalued input pattern clustering and SARTNN is presented. A normalized coefficient which measures the degree of match between two multivalued vectors, the Vector Degree of Match (VDM), provides SARTNN with the metric needed to perform clustering. Every ART architecture guarantees both plasticity and stability to the unsupervised learning stage. The SARTNN plasticity requirement is satisfied by implementing its attentional subsystem as a self-organized, feed-forward, flat Kohonen's ANN (KANN). The SARTNN stability requirement is properly driven by its orienting subsystem. SARTNN processes multivalued input vectors while featuring a simplified architectural acid mathematical model with respect to both the ART1 and the ART2 models, the latter being the ART model fitted to multivalued input pattern categorization. While the ART2 model exploits ten user-defined parameters, SARTNN requires only two user-defined parameters to be run: the first parameter is the vigilance threshold, /spl rho/, that affects the network's sensibility in detecting new output categories, whereas the second parameter, /spl tau/, is related to the network's learning rate. Both parameters have an intuitive physical meaning and allow the user to choose easily the proper discriminating power of the category extraction algorithm. The SARTNN performance is tested as a satellite image clustering algorithm. A chromatic component extractor is recommended in a satellite image preprocessing stage, in order to pursue SARTNN invariant pattern recognition. In comparison with classical clustering algorithms like ISODATA, the implemented system gives good results in terms of ease of use, parameter robustness and computation time. SARTNN should improve the performance of a Constraint Satisfaction Neural Network (CSNN) for image segmentation. SARTNN, exploited as a self-organizing first layer, should also improve the performance of both the CounterPropagation Neural Network (CPNN) and the Reduced connectivity Coulomb Energy Neural Network (RCENN).
机译:提出了一种人工神经网络(ANN)的实现,该人工神经网络执行了来自多值输入模式的任意序列的识别类别的无监督检测。提出的人工神经网络称为简化自适应共振理论神经网络(SARTNN)。首先,讨论了一种用于二进制模式分析的基于改进的自适应共振理论1(IART1)的神经网络,并提出了一种简化的ART1(SART1)模型。其次,将SART1模型扩展到多值输入模式聚类,并给出SARTNN。测量两个多值向量之间的匹配度的归一化系数(向量匹配度(VDM))为SARTNN提供执行聚类所需的度量。每种ART体系结构都保证了无监督学习阶段的可塑性和稳定性。通过将其注意子系统实现为自组织的,前馈的,平坦的Kohonen的ANN(KANN),可以满足SARTNN可塑性要求。 SARTNN稳定性要求由其定向子系统正确地驱动。 SARTNN处理多值输入向量,同时针对ART1和ART2模型提供简化的建筑酸性数学模型,后者是适合于多值输入模式分类的ART模型。尽管ART2模型利用了十个用户定义的参数,但SARTNN仅需要运行两个用户定义的参数:第一个参数是警戒阈值/ spl rho /,它会影响网络检测新输出类别的敏感性,而第二个参数是参数/ spl tau /与网络的学习率有关。这两个参数都具有直观的物理含义,并允许用户轻松选择类别提取算法的适当区分能力。 SARTNN性能已作为卫星图像聚类算法进行了测试。建议在卫星图像预处理阶段使用色度分量提取器,以追求SARTNN不变模式识别。与经典的聚类算法(例如ISODATA)相比,该实现的系统在易用性,参数鲁棒性和计算时间方面均提供了良好的结果。 SARTNN应该改善约束满意神经网络(CSNN)进行图像分割的性能。 SARTNN被用作自组织的第一层,还应该同时提高对向传播神经网络(CPNN)和降低连接性库仑能量神经网络(RCENN)的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号