首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Fusion of satellite active and passive microwave data for sea ice type concentration estimates
【24h】

Fusion of satellite active and passive microwave data for sea ice type concentration estimates

机译:融合卫星主动和被动微波数据进行海冰类型浓度估算

获取原文
获取原文并翻译 | 示例

摘要

Young first-year sea ice is nearly as important as open water in modulating heat flux between the ocean and atmosphere in the Arctic. Just after the onset of freeze-up, first-year ice is in the early stages of growth and will consist of young first-year and thin ice. The distribution of sea ice in this thickness range impacts heat transfer in the Arctic. Therefore, improving the estimates of ice concentrations in this thickness range is significant. The NASA Team Algorithm (NTA) for passive microwave data inaccurately classifies sea ice during the melt and freeze-up seasons because it misclassifies multiyear ice as first-year ice. We developed a hybrid fusion technique for incorporating multiyear ice information derived from synthetic aperture radar (SAR) images into a passive microwave algorithm to improve ice type concentration estimates. First, we classified SAR images using a dynamic thresholding technique and estimated the multiyear ice concentration. Then we used the SAR-derived multiyear ice concentration to constrain the NTA and obtained an improved first-year ice concentration estimate. We computed multiyear and first-year ice concentration estimates over a region in the eastern-central Arctic in which field observations of ice and in situ radar backscatter measurements were performed. The fused estimates of first-year and multiyear ice concentration appear to be more accurate than NTA, based on ice observations that were logged aboard the US Coast Guard Icebreaker Polar Star in the study area during 1991.
机译:在调节北极海洋与大气之间的热通量时,年轻的一年级海冰几乎与开放水一样重要。冻结开始后,第一年冰就处于生长的早期阶段,将由年轻的第一年冰和稀薄冰组成。在此厚度范围内海冰的分布会影响北极的热传递。因此,改进在该厚度范围内的冰浓度估算值非常重要。用于无源微波数据的NASA团队算法(NTA)在融化和冻结季节将海冰分类不正确,因为它将多年期冰误分类为第一年冰。我们开发了一种混合融合技术,用于将合成孔径雷达(SAR)图像中的多年冰信息合并到无源微波算法中,以改善冰类型浓度估算。首先,我们使用动态阈值技术对SAR图像进行分类,并估算了多年的冰浓度。然后,我们使用SAR得出的多年冰浓度来约束NTA,并获得了改进的第一年冰浓度估算值。我们计算了北极中东部地区一个地区的多年和第一年冰浓度估计值,在该区域中进行了冰的实地观测和原位雷达反向散射测量。根据1991年研究区域美国海岸警卫队破冰船极地之星上记录的冰观测结果,对第一年和多年冰浓度的融合估计似乎比NTA更为准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号