首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Markov random field model for classification of multisource satellite imagery
【24h】

A Markov random field model for classification of multisource satellite imagery

机译:用于多源卫星图像分类的Markov随机场模型

获取原文
获取原文并翻译 | 示例

摘要

A general model for multisource classification of remotely sensed data based on Markov random fields (MRF) is proposed. A specific model for fusion of optical images, synthetic aperture radar (SAR) images, and GIS (geographic information systems) ground cover data is presented in detail and tested. The MRF model exploits spatial class dependencies (spatial context) between neighboring pixels in an image, and temporal class dependencies between different images of the same scene. By including the temporal aspect of the data, the proposed model is suitable for detection of class changes between the acquisition dates of different images. The performance of the proposed model is investigated by fusing Landsat TM images, multitemporal ERS-1 SAR images, and GIS ground-cover maps for land-use classification, and on agricultural crop classification based on Landsat TM images, multipolarization SAR images, and GIS crop field border maps. The performance of the MRF model is compared to a simpler reference fusion model. On an average, the MRF model results in slightly higher (2%) classification accuracy when the same data is used as input to the two models. When GIS field border data is included in the MRF model, the classification accuracy of the MRF model improves by 8%. For change detection in agricultural areas, 75% of the actual class changes are detected by the MRF model, compared to 62% for the reference model. Based on the well-founded theoretical basis of Markov random field models for classification tasks and the encouraging experimental results in our small-scale study, the authors conclude that the proposed MRF model is useful for classification of multisource satellite imagery.
机译:提出了一种基于马尔可夫随机场(MRF)的遥感数据多源分类通用模型。详细介绍并测试了光学图像,合成孔径雷达(SAR)图像和GIS(地理信息系统)地面覆盖数据融合的特定模型。 MRF模型利用图像中相邻像素之间的空间类别依赖性(空间上下文)以及同一场景的不同图像之间的时间类别依赖性。通过包括数据的时间方面,所提出的模型适用于检测不同图像的获取日期之间的类别变化。通过融合Landsat TM图像,多时相ERS-1 SAR图像和GIS地面覆盖图进行土地利用分类,并基于Landsat TM图像,多极化SAR图像和GIS对农作物进行分类,研究了该模型的性能。作物田间边界图。将MRF模型的性能与更简单的参考融合模型进行比较。平均而言,当将相同的数据用作两个模型的输入时,MRF模型的分类精度会稍高(2%)。在MRF模型中包含GIS字段边界数据后,MRF模型的分类精度提高了8%。对于农业地区的变化检测,MRF模型可检测到实际类别变化的75%,而参考模型为62%。基于马尔科夫随机场模型用于分类任务的良好理论基础以及我们小规模研究的令人鼓舞的实验结果,作者得出结论,提出的MRF模型对于多源卫星图像的分类是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号