首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Kalman filtering approach to multispectral image classification and detection of changes in signature abundance
【24h】

A Kalman filtering approach to multispectral image classification and detection of changes in signature abundance

机译:用于多光谱图像分类和签名丰度变化检测的卡尔曼滤波方法

获取原文
获取原文并翻译 | 示例

摘要

Subpixel detection and classification are important in identification and quantification of multicomponent mixtures in remotely sensed data, such as multispectral/hyperspectral images. A recently proposed orthogonal subspace projection (OSP) has shown some success in Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperspectral Digital Imagery Collection Experiment (HYDICE) data. However, like most techniques, OSP has its own constraints. One inherent limitation is that the number of signatures to be classified cannot be greater than that of spectral bands. Owing to this limitation, OSP may not perform well for multispectral imagery as it does for hyperspectral imagery. This phenomenon is observed by three-band Satellite Pour l'Observation de la Terra (SPOT) data because of an insufficient number of spectral bands compared to the number of materials to be classified. Further, most approaches proposed for multispectral and hyperspectral image analysis, including OSP, operate on a pixel by pixel basis. In this case, a general assumption is made on the fact that the image data are stationary and pixel independent. Unfortunately, this may be true for laboratory data, but not for real data, due to varying atmospheric and scattering effects. In this paper, a Kalman filtering approach is presented that overcomes the aforementioned problems. In addition to the observation process described by a linear mixture model, a Kalman filter utilizes an abundance state equation to model the nonstationary nature in signature abundance. As a result, the signature abundance can be estimated and updated recursively by the Kalman filter and an abrupt change in signature abundance can be detected via the abundance state equation.
机译:亚像素检测和分类对于识别和量化遥感数据(例如多光谱/高光谱图像)中的多组分混合物非常重要。最近提出的正交子空间投影(OSP)在机载可见/红外成像光谱仪(AVIRIS)和高光谱数字影像收集实验(HYDICE)数据中显示出一些成功。但是,像大多数技术一样,OSP也有其自身的约束。一个固有的限制是要分类的签名的数量不能大于光谱带的数量。由于该限制,OSP在多光谱图像上可能无法像在高光谱图像上那样表现良好。三光谱卫星观测数据(SPOT)观察到了这种现象,因为与要分类的材料数量相比,光谱带数量不足。此外,为多光谱和高光谱图像分析提出的大多数方法,包括OSP,都在逐个像素的基础上运行。在这种情况下,基于图像数据是固定的并且独立于像素的事实来做出一般假设。不幸的是,由于变化的大气和散射效应,这对于实验室数据可能是正确的,但对于真实数据却并非如此。在本文中,提出了一种克服上述问题的卡尔曼滤波方法。除了由线性混合模型描述的观察过程外,卡尔曼滤波器还利用丰度状态方程对特征丰度中的非平稳性进行建模。结果,可以通过卡尔曼滤波器对签名丰度进行估计和递归更新,并且可以通过丰度状态方程来检测签名丰度的突变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号