首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A new polarimetric classification approach evaluated for agricultural crops
【24h】

A new polarimetric classification approach evaluated for agricultural crops

机译:对农作物进行评估的一种新的极化分类方法

获取原文
获取原文并翻译 | 示例

摘要

Statistical properties of the polarimetric backscatter behavior for a single homogeneous area with constant radar reflectivity are described by the Wishart distribution or its marginal distributions. These distributions do not necessarily well describe the statistics for a collection of homogeneous areas of the same class because of variation in, for example, biophysical parameters. Using Kolmogorov-Smirnov (KS) tests of fit, it is shown that, for example, the Beta distribution is a better descriptor for the polarimetric correlation, and the log-normal distribution for the backscatter level. An evaluation is given for a number of agricultural crop classes, grasslands, and fruit tree plantations at the Flevoland test site, using an AirSAR (C-, L- and P-band polarimetric) image from July 3, 1991. A new reversible transform of the covariance matrix into backscatter intensities will be introduced in order to describe the full polarimetric target properties in a mathematically alternative way, allowing for the development of simple, versatile, and robust classifiers. Moreover, it allows for polarimetric image segmentation using conventional approaches. The effect of azimuthally asymmetric backscatter behavior on the classification results is discussed. Several models are proposed, and results are compared with results from the literature for the same test site. It can be concluded that the introduced classifiers perform very well, with levels of accuracy for this test site, with 14 cover types, of 90.4% for C-band, 88.7% for L-band, and 96.3% for the combination of C- and L-band.
机译:Wishart分布或其边际分布描述了具有恒定雷达反射率的单个同质区域的偏振反向散射行为的统计特性。由于例如生物物理参数的变化,这些分布不一定很好地描述了同一类同质区域集合的统计数据。使用Kolmogorov-Smirnov(KS)拟合检验,可以证明,例如,Beta分布是偏振相关性的更好描述子,而背向散射水平是对数正态分布。使用1991年7月3日的AirSAR(C波段,L波段和P波段极化)图像,对Flevoland测试地点的许多农作物类,草原和果树种植园进行了评估。新的可逆转换将引入协方差矩阵到反向散射强度,以便以数学替代方式描述完整的偏振目标特性,从而允许开发简单,通用和鲁棒的分类器。此外,它允许使用常规方法进行偏振图像分割。讨论了方位角非对称反向散射行为对分类结果的影响。提出了几种模型,并将结果与​​文献中相同测试地点的结果进行比较。可以得出的结论是,引入的分类器在此测试站点上的准确性水平很高,有14种覆盖类型,C频段为90.4%,L频段为88.7%,C-频段组合为96.3%和L波段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号