首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling
【24h】

SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling

机译:基于重尾模型的贝叶斯小波收缩SAR图像去噪

获取原文
获取原文并翻译 | 示例

摘要

Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise, which is due to the coherent nature of the scattering phenomenon. This paper proposes a novel Bayesian-based algorithm within the framework of wavelet analysis, which reduces speckle in SAR images while preserving the structural features and textural information of the scene. First, we show that the subband decompositions of logarithmically transformed SAR images are accurately modeled by alpha-stable distributions, a family of heavy-tailed densities. Consequently, we exploit this a priori information by designing a maximum a posteriori (MAP) estimator. We use the alpha-stable model to develop a blind speckle-suppression processor that performs a nonlinear operation on the data and we relate this nonlinearity to the degree of non-Gaussianity of the data. Finally, we compare our proposed method to current state-of-the-art soft thresholding techniques applied on real SAR imagery and we quantify the achieved performance improvement.
机译:合成孔径雷达(SAR)图像固有地受到斑点噪声的相乘影响,这是由于散射现象的相干性所致。本文在小波分析的框架下提出了一种基于贝叶斯算法的新算法,该算法在保留SAR图像的结构特征和纹理信息的同时,减少了SAR图像中的斑点。首先,我们证明对数转换后的SAR图像的子带分解是通过α稳定分布(一个重尾密度族)精确建模的。因此,我们通过设计最大后验(MAP)估计器来利用此先验信息。我们使用alpha稳定模型来开发盲散斑抑制处理器,该处理器对数据执行非线性运算,并将这种非线性与数据的非高斯程度相关联。最后,我们将我们提出的方法与应用于实际SAR图像的当前最先进的软阈值技术进行了比较,并对获得的性能改进进行了量化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号