首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Training DHMMs of mine and clutter to minimize landmine detection errors
【24h】

Training DHMMs of mine and clutter to minimize landmine detection errors

机译:训练地雷和杂物的DHMM以最小化地雷检测错误

获取原文
获取原文并翻译 | 示例

摘要

Minimum classification error (MCE) training is proposed to improve performance of a discrete hidden Markov model (DHMM)-based landmine detection system. The system (baseline) was proposed previously for detection of both metal and nonmetal mines from ground-penetrating radar signatures collected by moving vehicles. An initial DHMM model is trained by conventional methods of vector quantization and the Baum-Welch algorithm. A sequential generalized probabilistic descent (GPD) algorithm that minimizes an empirical loss function is then used to estimate the landmine/background DHMM parameters, and an evolutionary algorithm (EA) based on fitness score of classification accuracy is used to generate and select codebooks. The landmine data of one geographical site was used for model training, and those of two different sites were used for evaluation of system performance. Three scenarios were studied: 1) apply MCE/GPD alone to DHMM estimation, 2) apply EA alone to codebook generation, and 3) first apply EA to codebook generation and then apply MCE/GPD to DHMM estimation. Overall, the combined EA and MCE/GPD training led to the best performance. At the same level of detection rate as the baseline DHMM system, the false-alarm rate was reduced by a factor of two, indicating significant performance improvement.
机译:提出了最小分类误差(MCE)训练,以提高基于离散隐马尔可夫模型(DHMM)的地雷检测系统的性能。该系统(基线)以前被提议用于从移动车辆收集的穿透地面的雷达信号中检测金属和非金属矿山。初始DHMM模型通过矢量量化和Baum-Welch算法的常规方法进行训练。然后,使用最小化经验损失函数的顺序广义概率下降(GPD)算法来估计地雷/背景DHMM参数,并使用基于分类准确度的适合度评分的进化算法(EA)来生成和选择码本。一个地理位置的地雷数据用于模型训练,而两个不同地点的地雷数据用于评估系统性能。研究了三种情况:1)将MCE / GPD单独应用于DHMM估计,2)将EA单独应用于码本的生成,以及3)首先将EA应用于码本的生成,然后将MCE / GPD应用于DHMM估计。总体而言,EA和MCE / GPD相结合的培训带来了最佳性能。在与基线DHMM系统相同的检测率水平下,错误警报率降低了两倍,表明性能得到了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号