首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Automatic reduction of hyperspectral imagery using wavelet spectral analysis
【24h】

Automatic reduction of hyperspectral imagery using wavelet spectral analysis

机译:利用小波光谱分析自动减少高光谱影像

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral imagery provides richer information about materials than multispectral imagery. The new larger data volumes from hyperspectral sensors present a challenge for traditional processing techniques. For example, the identification of each ground surface pixel by its corresponding spectral signature is still difficult because of the immense volume of data. Conventional classification methods may not be used without dimension reduction preprocessing. This is due to the curse of dimensionality, which refers to the fact that the sample size needed to estimate a function of several variables to a given degree of accuracy grows exponentially with the number of variables. Principal component analysis (PCA) has been the technique of choice for dimension reduction. However, PCA is computationally expensive and does not eliminate anomalies that can be seen at one arbitrary band. Spectral data reduction using automatic wavelet decomposition could be useful. This is because it preserves the distinctions among spectral signatures. It is also computed in automatic fashion and can filter data anomalies. This is due to the intrinsic properties of wavelet transforms that preserves high- and low-frequency features, therefore preserving peaks and valleys found in typical spectra. Compared to PCA, for the same level of data reduction, we show that automatic wavelet reduction yields better or comparable classification accuracy for hyperspectral data, while achieving substantial computational savings.
机译:与多光谱图像相比,高光谱图像提供了更多有关材料的信息。来自高光谱传感器的新的更大数据量对传统处理技术提出了挑战。例如,由于数据量巨大,通过其相应的光谱特征来识别每个地面像素仍然很困难。如果没有降维预处理,则不能使用常规分类方法。这是由于维数的诅咒,这是指这样一个事实,即在给定的准确度下估计多个变量的函数所需的样本大小随变量的数量呈指数增长。主成分分析(PCA)已成为减少尺寸的首选技术。但是,PCA在计算上是昂贵的,并且不能消除在一个任意频带上可以看到的异常。使用自动小波分解的光谱数据缩减可能会很有用。这是因为它保留了光谱特征之间的区别。它还以自动方式进行计算,并且可以过滤数据异常。这是由于小波变换的固有属性保留了高频和低频特征,因此保留了典型频谱中的峰谷。与PCA相比,对于相同水平的数据约简,我们证明了自动小波约简对于高光谱数据可产生更好或相当的分类精度,同时可节省大量计算量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号