首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Investigation of the random forest framework for classification of hyperspectral data
【24h】

Investigation of the random forest framework for classification of hyperspectral data

机译:高光谱数据分类的随机森林框架研究

获取原文
获取原文并翻译 | 示例

摘要

Statistical classification of byperspectral data is challenging because the inputs are high in dimension and represent multiple classes that are sometimes quite mixed, while the amount and quality of ground truth in the form of labeled data is typically limited. The resulting classifiers are often unstable and have poor generalization. This work investigates two approaches based on the concept of random forests of classifiers implemented within a binary hierarchical multiclassifier system, with the goal of achieving improved generalization of the classifier in analysis of hyperspectral data, particularly when the quantity of training data is limited. A new classifier is proposed that incorporates bagging of training samples and adaptive random subspace feature selection within a binary hierarchical classifier (BHC), such that the number of features that is selected at each node of the tree is dependent on the quantity of associated training data. Results are compared to a random forest implementation based on the framework of classification and regression trees. For both methods, classification results obtained from experiments on data acquired by the National Aeronautics and Space Administration (NASA) Airborne Visible/Infrared Imaging Spectrometer instrument over the Kennedy Space Center, Florida, and by Hyperion on the NASA Earth Observing 1 satellite over the Okavango Delta of Botswana are superior to those from the original best basis BHC algorithm and a random subspace extension of the BHC.
机译:超光谱数据的统计分类具有挑战性,因为输入的维数很高,并且代表了有时混杂的多个类别,而标记数据形式的地面事实的数量和质量通常受到限制。所得的分类器通常不稳定,泛化能力差。这项工作基于二进制分层多分类器系统中实现的分类器随机森林概念,研究了两种方法,目的是在高光谱数据分析中,尤其是在训练数据量有限的情况下,提高分类器的泛化能力。提出了一种新的分类器,该分类器将训练样本的袋装和自适应随机子空间特征选择合并到二进制分层分类器(BHC)中,从而在树的每个节点上选择的特征数量取决于相关训练数据的数量。将结果与基于分类树和回归树的框架的随机森林实施方案进行比较。对于这两种方法,分类结果都是根据美国国家航空航天局(NASA)佛罗里达州肯尼迪航天中心的机载可见/红外成像光谱仪仪器以及美国宇航局Hyperion公司在Okavango上观测1颗卫星的数据进行的实验得出的分类结果博茨瓦纳的Delta优于原始的最佳基础BHC算法和BHC的随机子空间扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号