首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Comparison of NASA Team2 and AES-york ice concentration algorithms against operational ice charts from the Canadian ice service
【24h】

Comparison of NASA Team2 and AES-york ice concentration algorithms against operational ice charts from the Canadian ice service

机译:NASA Team2和AES-york冰浓度算法与加拿大冰服务局提供的运行冰图的比较

获取原文
获取原文并翻译 | 示例

摘要

Ice concentration retrieved from spaceborne passive-microwave observations is a prime input to operational sea-ice-monitoring programs, numerical weather prediction models, and global climate models. Atmospheric Environment Service (AES)-York and the Enhanced National Aeronautics and Space Administration Team (NT2) are two algorithms that calculate ice concentration from SpecialSensor Microwave/Imager observations. This paper furnishes a comparison between ice concentrations (total, thin, and thick types) output from NT2 and AES-York algorithms against the corresponding estimates from the operational analysis of Radarsat images in the Canadian Ice Service (CIS). A new data fusion technique, which incorporates the actual sensor's footprint, was developed to facilitate this study. Results have shown that the NT2 and AES-York algorithms underestimate total ice concentration by 18.35% and 9.66% concentration counts on average, with 16.8% and 15.35% standard deviation, respectively. However, the retrieved concentrations of thin and thick ice are in much more discrepancy with the operational CIS estimates when either one of these two types dominates the viewing area. This is more likely to occur when the total ice concentration approaches 100%. If thin and thick ice types coexist in comparable concentrations, the algorithms' estimates agree with CIS's estimates. In terms of ice concentration retrieval, thin ice is more problematic than thick ice. The concept of using a single tie point to represent a thin ice surface is not realistic and provides the largest error source for retrieval accuracy. While AES-York provides total ice concentration in slightly more agreement with CIS's estimates, NT2 provides better agreement in retrieving thin and thick ice concentrations.
机译:从太空无源微波观测中获得的冰浓度是可操作的海冰监测计划,数值天气预报模型和全球气候模型的主要输入。约克大气环境服务局(AES)和美国国家航空航天局增强计划(NT2)是根据SpecialSensor微波/成像仪观测结果计算冰浓度的两种算法。本文提供了NT2和AES-York算法输出的冰浓度(总计,稀薄和浓厚类型)与加拿大冰服务局(CIS)的Radarsat影像运行分析得出的相应估计值的比较。为了促进这项研究,开发了一种新的数据融合技术,该技术融合了实际传感器的尺寸。结果表明,NT2和AES-York算法平均低估了总冰浓度,平均计数值为18.35%和9.66%,标准差分别为16.8%和15.35%。但是,当这两种类型中的任何一种占主导地位时,所获取的稀薄和厚冰的浓度与可操作CIS估计的差异就更大。当总冰浓度接近100%时,更可能发生这种情况。如果稀薄和厚冰类型以可比较的浓度共存,则算法的估计与CIS的估计一致。在冰的浓度恢复方面,薄冰比厚冰更成问题。使用单个连接点表示薄冰表面的概念不切实际,并且为获取精度提供了最大的误差源。虽然AES-York提供的总冰浓度与CIS的估算稍有一致,但NT2在检索稀薄和浓冰浓度方面提供了更好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号