首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Badly posed classification of remotely sensed images-an experimental comparison of existing data labeling systems
【24h】

Badly posed classification of remotely sensed images-an experimental comparison of existing data labeling systems

机译:遥感图像的不良姿势分类-现有数据标记系统的实验比较

获取原文
获取原文并翻译 | 示例

摘要

Although underestimated in practice, the small/unrepresentative sample problem is likely to affect a large segment of real-world remotely sensed (RS) image mapping applications where ground truth knowledge is typically expensive, tedious, or difficult to gather. Starting from this realistic assumption, subjective (weak) but ample evidence of the relative effectiveness of existing unsupervised and supervised data labeling systems is collected in two RS image classification problems. To provide a fair assessment of competing techniques, first the two selected image datasets feature different degrees of image fragmentation and range from poorly to ill-posed. Second, different initialization strategies are tested to pass on to the mapping system at hand the maximally informative representation of prior (ground truth) knowledge. For estimating and comparing the competing systems in terms of learning ability, generalization capability, and computational efficiency when little prior knowledge is available, the recently published data-driven map quality assessment (DAMA) strategy, which is capable of capturing genuine, but small, image details in multiple reference cluster maps, is adopted in combination with a traditional resubstitution method. Collected quantitative results yield conclusions about the potential utility of the alternative techniques that appear to be realistic and useful in practice, in line with theoretical expectations and the qualitative assessment of mapping results by expert photointerpreters.
机译:尽管在实践中低估了样本量,但代表性不足的问题很可能会影响现实世界中很大一部分遥感(RS)图像映射应用程序,在这些应用程序中,地面真相知识通常很昂贵,乏味或难以收集。从这个现实的假设出发,在两个RS图像分类问题中收集了有关现有无监督和有监督的数据标记系统的相对有效性的主观(弱)证据。为了公平地评估竞争技术,首先,两个选定的图像数据集具有不同程度的图像碎片,范围从不良到不适定。其次,测试了不同的初始化策略,以将现有的(基本事实)知识的最大信息量传递给手头的制图系统。为了在缺乏先验知识的情况下根据学习能力,泛化能力和计算效率来评估和比较竞争系统,最近发布的数据驱动地图质量评估(DAMA)策略可以捕获真实但很小的数据,与传统的替换方法结合使用多个参考聚类图中的图像细节。收集到的定量结果得出了有关替代技术潜在实用性的结论,这些替代性实用性在实践中似乎是现实和有用的,这与理论期望和专家级照片解释人员对制图结果的定性评估相符。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号