首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >A Support Vector Domain Description Approach to Supervised Classification of Remote Sensing Images
【24h】

A Support Vector Domain Description Approach to Supervised Classification of Remote Sensing Images

机译:支持向量域描述方法在遥感图像监督分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of supervised classification of remote sensing images in the presence of incomplete (nonexhaustive) training sets. The problem is analyzed according to two different perspectives: 1) description and recognition of a specific land-cover class by using single-class classifiers and 2) solution of multiclass problems with single-class classification techniques. In this framework, we analyze different one-class classifiers and introduce in the remote sensing community the support vector domain description method (SVDD). The SVDD is a kernel-based method that exhibits intrinsic regularization ability and robustness versus low numbers of high-dimensional samples. The SVDD technique is compared with other standard single-class methods both in problems focused on the recognition of a single specific land-cover class and in multiclass problems. For the latter, we properly define an easily scalable multiclass architecture capable to deal with incomplete training data. Experimental results, obtained on different kinds of data (synthetic, hyperspectral, and multisensor images), point out the effectiveness of the SVDD technique and provide important indications for driving the choice of the classification technique and architecture in the presence of incomplete training data.
机译:本文针对存在不完整(非穷举)训练集的情况下遥感影像的监督分类问题。根据两个不同的角度对问题进行了分析:1)使用单类分类器描述和识别特定的土地覆被类别; 2)用单类分类技术解决多类问题。在此框架中,我们分析了不同的一类分类器,并在遥感社区中介绍了支持向量域描述方法(SVDD)。 SVDD是一种基于内核的方法,相对于少量的高维样本,它具有固有的正则化能力和鲁棒性。将SVDD技术与其他标准的单类方法进行了比较,无论是在针对单个特定土地覆被类的识别上还是在多类问题上。对于后者,我们适当地定义了一个易于扩展的多类体系结构,该体系结构能够处理不完整的训练数据。在不同种类的数据(合成,高光谱和多传感器图像)上获得的实验结果指出了SVDD技术的有效性,并为在存在不完整训练数据的情况下选择分类技术和体系结构提供了重要的指示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号