首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Electromagnetic Scattering From Randomly Rough Surfaces Using the Stochastic Second-Degree Method and the Sparse Matrix/Canonical Grid Algorithm
【24h】

Electromagnetic Scattering From Randomly Rough Surfaces Using the Stochastic Second-Degree Method and the Sparse Matrix/Canonical Grid Algorithm

机译:随机二次度法和稀疏矩阵/规范网格算法对随机粗糙表面的电磁散射

获取原文
获取原文并翻译 | 示例

摘要

In applying the magnetic field integration equation for the numerical study of electromagnetic wave scattering from 2-D perfectly electric conducting randomly rough surfaces, we propose to apply the stochastic second-degree (SSD) method to improve the asymptotic convergence rate of the discretized system by the method of moment, in conjunction with the highly efficient method for calculating the product of the impedance matrix and a vector embedded in the sparse matrix/canonical grid (SMCG) algorithm. The proposed method, applied to a new matrix-splitting scheme, can also appreciably reduce the memory requirement for the same neighborhood distance parameter rd, or it can enlarge rd for the same memory requirement as that of SMCG. The preliminary results show that the proposed method has encouraging potential for moderate rough surfaces and for cases with a large number of unknowns. Moreover, in our approach, the structure of the new splitting in conjunction with SSD is quite general, and the involved key computation, namely, the product of the impedance matrix and a vector, is independent of the specifics of the approximation schemes. Hence, the formulation can be extended to a variety of approximation schemes, such as the recent multilevel expansion algorithm of the SMCG method.
机译:在将磁场积分方程用于二维完美导电随机粗糙表面电磁波散射的数值研究中,我们建议采用随机二次(SSD)方法来提高离散系统的渐近收敛速度,具体方法是:矩法,结合高效的方法来计算阻抗矩阵与稀疏矩阵/规范网格(SMCG)算法中嵌入的矢量的乘积。将该方法应用于新的矩阵拆分方案,还可以显着降低相同邻域距离参数rd的存储需求,或者可以将与SMCG相同的存储需求扩大rd。初步结果表明,所提出的方法对于中等粗糙度的表面和大量未知情况具有令人鼓舞的潜力。此外,在我们的方法中,结合SSD的新拆分的结构非常通用,并且所涉及的关键计算(即阻抗矩阵和矢量的乘积)与近似方案的细节无关。因此,该公式可以扩展到各种近似方案,例如SMCG方法的最新多级扩展算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号