首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Investigation of Nonlinearity in Hyperspectral Imagery Using Surrogate Data Methods
【24h】

Investigation of Nonlinearity in Hyperspectral Imagery Using Surrogate Data Methods

机译:使用替代数据方法研究高光谱图像中的非线性

获取原文
获取原文并翻译 | 示例

摘要

Although hyperspectral remotely sensed data are believed to be nonlinear, they are often modeled and processed by algorithms assuming that the data are realizations of some linear stochastic processes. This is likely due to the reason that either the nonlinearity of the data may not be strong enough, and the algorithms based on linear data assumption may still do the job, or the effective algorithms that are capable of dealing with nonlinear data are not widely available. The simplification on data characteristics, however, may compromise the effectiveness and accuracy of information extraction from hyperspectral imagery. In this paper, we are investigating the existence of non- linearity in hyperspectral data represented by a 4-m Airborne Visible/Infrared Imaging Spectrometer image acquired over an area of coastal forests on Vancouver Island. The method employed for the investigation is based on the statistical test using surrogate data, an approach often used in nonlinear time series analysis. In addition to the high-order autocorrelation, spectral angle is utilized as the discriminating statistic to evaluate the differences between the hyperspectral data and their surrogates. To facilitate the statistical test, simulated data sets are created under linear stochastic constraints. Both simulated and real hyperspectral data are rearranged into a set of spectral series where the spectral and spatial adjacency of the original data is maintained as much as possible. This paper reveals that the differences are statistically significant between the values of discriminating statistics derived from the hyperspectral data and their surrogates. This indicates that the selected hyperspectral data are nonlinear in the spectral domain. Algorithms that are capable of explicitly addressing the nonlinearity are needed for processing hyperspectral remotely sensed data.
机译:尽管高光谱遥感数据被认为是非线性的,但它们通常通过算法进行建模和处理,前提是数据是某些线性随机过程的实现。这可能是由于以下原因之一:要么数据的非线性可能不够强,并且基于线性数据假设的算法仍可以胜任工作,要么是不能广泛使用能够处理非线性数据的有效算法。 。但是,简化数据特征可能会损害从高光谱图像提取信息的有效性和准确性。在本文中,我们正在调查以高光谱数据表示的非线性的存在,该数据由在温哥华岛沿海森林区域采集的4米机载可见/红外成像光谱仪图像表示。用于调查的方法基于使用替代数据的统计检验,替代数据是非线性时间序列分析中经常使用的一种方法。除了高阶自相关之外,还利用光谱角作为判别统计量来评估高光谱数据与其替代物之间的差异。为了促进统计测试,在线性随机约束下创建了模拟数据集。模拟的和实际的高光谱数据都重新排列为一组光谱序列,其中尽可能保持原始数据的光谱和空间邻接。本文揭示了从高光谱数据派生出的区别统计值与它们的替代值之间的差异在统计上是显着的。这表明所选的高光谱数据在光谱域中是非线性的。处理高光谱遥感数据需要能够显式解决非线性问题的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号