首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Spectral Clustering Ensemble Applied to SAR Image Segmentation
【24h】

Spectral Clustering Ensemble Applied to SAR Image Segmentation

机译:谱聚类集成在SAR图像分割中的应用

获取原文
获取原文并翻译 | 示例

摘要

Spectral clustering (SC) has been used with success in the field of computer vision for data clustering. In this paper, a new algorithm named SC ensemble (SCE) is proposed for the segmentation of synthetic aperture radar (SAR) images. The gray-level cooccurrence matrix-based statistic features and the energy features from the undecimated wavelet decomposition extracted for each pixel being the input, our algorithm performs segmentation by combining multiple SC results as opposed to using outcomes of a single clustering process in the existing literature. The random subspace, random scaling parameter, and NystrÖm approximation for component SC are applied to construct the SCE. This technique provides necessary diversity as well as high quality of component learners for an efficient ensemble. It also overcomes the shortcomings faced by the SC, such as the selection of scaling parameter, and the instability resulted from the NystrÖm approximation method in image segmentation. Experimental results show that the proposed method is effective for SAR image segmentation and insensitive to the scaling parameter.
机译:光谱聚类(SC)已成功用于数据聚类的计算机视觉领域。针对合成孔径雷达(SAR)图像的分割问题,提出了一种新的算法,即SC集合算法(SCE)。基于灰度共生矩阵的统计特征和未抽取小波分解的能量特征(针对每个像素作为输入提取),我们的算法通过组合多个SC结果(而不是使用现有文献中的单个聚类过程的结果)来进行分割。使用分量SC的随机子空间,随机缩放参数和NystrÖm近似来构造SCE。该技术为有效的集成提供了必要的多样性以及高质量的组件学习器。它也克服了SC所面临的缺点,例如缩放参数的选择,以及NystrÖm逼近方法在图像分割中的不稳定性。实验结果表明,该方法对SAR图像分割有效,对缩放参数不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号