首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Synergy of SMOS Microwave Radiometer and Optical Sensors to Retrieve Soil Moisture at Global Scale
【24h】

Synergy of SMOS Microwave Radiometer and Optical Sensors to Retrieve Soil Moisture at Global Scale

机译:SMOS微波辐射计和光学传感器在全球范围内反演土壤水分的协同作用

获取原文
获取原文并翻译 | 示例

摘要

Methods to retrieve surface soil moisture were assessed at the global scale for one entire year by using simulated Soil Moisture and Ocean Salinity brightness temperatures $(T_{rm B})$ and vegetation coverage information which can be derived from optical sensors. The global $T_{rm B}$ database consists of half-degree continental pixels and accounts for within-pixel heterogeneity, based on 1-km resolution land cover maps. The retrievals were performed by using a three-parameter inversion method applied to the L-band Microwave Emission of the Biosphere model. By using a Bayesian approach, vegetation data were injected as a priori information. Two options were investigated to profit from normalized difference vegetation index products: providing an a priori knowledge either on vegetation optical depth or on the vegetation cover fraction $(f_{rm cover})$. The latter option allows for a better description of the surface heterogeneity by considering a bare soil fraction. When an error of 1 K is applied to the $T_{rm B}$, both synergistic schemes significantly improved the soil moisture accuracy compared with methods using microwave data only. Using the vegetation a priori information, about 80% of the pixels present soil moisture retrieval accuracy less than 0.04 $hbox{m}^{3}cdothbox{m}^{-3}$ in terms of root-mean-square error, whereas methods based only on the microwave data provide 63% of pixels of the studied area with this accuracy. If the error in $T_{rm B}$ is larger (2 or 3 K), the soil moisture retrieval accuracy -decreases significantly for both methods. The use of optical data to give a priori value of vegetation optical option is then the best for these cases.
机译:通过使用模拟的土壤水分和海洋盐度亮度温度$(T_ {rm B})$以及可以从光学传感器获得的植被覆盖率信息,在全球范围内评估了整整一年的表层土壤水分的方法。全球$ T_ {rm B} $数据库由半度大陆像素组成,并基于1公里分辨率的土地覆盖图说明了像素内异质性。通过使用应用于生物圈模型L波段微波发射的三参数反演方法进行检索。通过使用贝叶斯方法,将植被数据作为先验信息注入。研究了两种方法以从归一化的差异植被指数产品中获利:提供有关植被光学深度或植被覆盖率$(f_ {rm cover})$的先验知识。通过考虑裸露的土壤分数,后一种选择可以更好地描述表面异质性。当对$ T_ {rm B} $施加1 K的误差时,与仅使用微波数据的方法相比,这两种协同方案均显着提高了土壤湿度的准确性。使用植被的先验信息,约80%的像素呈现的土壤水分反演精度在均方根误差方面小于0.04 $ hbox {m} ^ {3} cdothbox {m} ^ {-3} $,而仅基于微波数据的方法可提供此研究区域面积的63%的像素。如果$ T_ {rm B} $中的误差较大(2或3 K),则两种方法的土壤水分取回精度都会大大降低。因此,在这些情况下,最好使用光学数据来给出植被光学选择的先验值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号