首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Water Level Estimation and Reduction of Hydraulic Model Calibration Uncertainties Using Satellite SAR Images of Floods
【24h】

Water Level Estimation and Reduction of Hydraulic Model Calibration Uncertainties Using Satellite SAR Images of Floods

机译:利用洪水的卫星SAR图像估算水位并减少水力模型校准的不确定性

获取原文
获取原文并翻译 | 示例

摘要

Exploitation of river inundation satellite images, particularly for operational applications, is mostly restricted to flood extent mapping. However, there lies significant potential for improvement in a 3-D characterization of floods (i.e., flood depth maps) and an integration of the remote-sensing-derived (RSD) characteristics in hydraulic models. This paper aims at developing synthetic aperture radar (SAR) image analysis methods that go beyond flood extent mapping to assess the potential of these images in the spatiotemporal characterization of flood events. To meet this aim, two research issues were addressed. The first issue relates to water level estimation. The proposed method, which is an adaptation to SAR images of the method developed by [1] and [2] for water level estimation using flood aerial photographs, is composed of three steps: 1) extraction of flood extent limits that are relevant for water level estimation; 2) water level estimation by merging relevant limits with a Digital Elevation Model; and 3) constraining of the water level estimates using hydraulic coherence concepts. Applied to an ENVISAT image of an Alzette River flood (2003, Grand Duchy of Luxembourg), this provides $pm$54-cm average vertical uncertainty water levels that were validated using a sample of ground surveyed high water marks. The second issue aims at better constraining hydraulic models using these RSD water levels. To meet this aim, a “traditional” calibration using recorded hydrographs is completed via comparison between simulated and RSD water levels. This integration of the RSD characteristics proves to better constrain the model (i.e., the number of parameter sets providing acceptable results with respect to observations has been reduced). Furthermore, simulations of a flood event of a different return period (2007) using the model calibrated for the 2003 flood event shows the reliabi-n-nlity of the latter for flood forecasting.
机译:对河流淹没卫星图像的开发(尤其是在操作应用中)主要限于洪水范围制图。但是,在洪水的3D表征(即洪水深度图)以及将水力模型中的遥感(RSD)特征集成方面,存在巨大的改进潜力。本文旨在开发合成孔径雷达(SAR)图像分析方法,该方法超越了洪水范围制图,可评估这些图像在洪水事件的时空特征中的潜力。为了实现这一目标,解决了两个研究问题。第一个问题与水位估计有关。所提出的方法是由[1]和[2]开发的用于利用洪水航拍照片估算水位的方法的SAR图像的方法,它包括三个步骤:1)提取与水有关的洪水范围极限水平估计; 2)通过将相关限值与数字高程模型合并来估算水位;和3)使用水力连贯性概念约束水位估计。将其应用到ENVISAT的阿尔泽特河洪水(2003年,卢森堡大公国)图像上,可提供$ pm $ 54-cm的平均垂直不确定水位,这些水位已通过地面测量的高水位线样本进行了验证。第二个问题旨在使用这些RSD水位更好地约束水力模型。为了达到这个目的,通过比较模拟水位和RSD水位,完成了使用记录水位图的“传统”校准。 RSD特性的这种集成证明可以更好地约束模型(即,减少了提供相对于观测结果可接受的参数集的数量)。此外,使用为2003年洪水事件校准的模型对不同回报期(2007年)的洪水事件进行的仿真显示,后者对于洪水预报的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号