首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Noise-Resistant Wavelet-Based Bayesian Fusion of Multispectral and Hyperspectral Images
【24h】

Noise-Resistant Wavelet-Based Bayesian Fusion of Multispectral and Hyperspectral Images

机译:基于抗小波的贝叶斯多光谱和高光谱图像融合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a technique is presented for the fusion of multispectral (MS) and hyperspectral (HS) images to enhance the spatial resolution of the latter. The technique works in the wavelet domain and is based on a Bayesian estimation of the HS image, assuming a joint normal model for the images and an additive noise imaging model for the HS image. In the complete model, an operator is defined, describing the spatial degradation of the HS image. Since this operator is, in general, not exactly known and in order to alleviate the burden of solving the inverse operation (a deconvolution problem), an interpolation is performed a priori . Furthermore, the knowledge of the spatial degradation is restricted to an approximation based on the resolution difference between the images. The technique is compared to its counterpart in the image domain and validated for noisy conditions. Furthermore, its performance is compared to several state-of-the-art pansharpening techniques, in the case where the MS image becomes a panchromatic image, and to MS and HS image fusion techniques from the literature.
机译:本文提出了一种融合多光谱(MS)和高光谱(HS)图像的技术,以增强后者的空间分辨率。该技术在小波域中工作,并且基于HS图像的贝叶斯估计,并假设图像的联合法线模型和HS图像的加性噪声​​成像模型。在完整模型中,定义了一个算子,描述了HS图像的空间退化。通常,由于尚不完全知道该算子,并且为了减轻求解逆运算的负担(解卷积问题),因此先验地进行插值。此外,基于图像之间的分辨率差异,将空间退化的知识限制为近似值。将该技术与其在图像域中的同类技术进行比较,并针对嘈杂条件进行了验证。此外,在MS图像变为全色图像的情况下,将其性能与几种最新的全锐化技术进行比较,并与文献中的MS和HS图像融合技术进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号