首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Three-Dimensional Gabor Wavelets for Pixel-Based Hyperspectral Imagery Classification
【24h】

Three-Dimensional Gabor Wavelets for Pixel-Based Hyperspectral Imagery Classification

机译:三维Gabor小波用于基于像素的高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

The rich information available in hyperspectral imagery not only poses significant opportunities but also makes big challenges for material classification. Discriminative features seem to be crucial for the system to achieve accurate and robust performance. In this paper, we propose a 3-D Gabor-wavelet-based approach for pixel-based hyperspectral imagery classification. A set of complex Gabor wavelets with different frequencies and orientations is first designed to extract signal variances in space, spectrum, and joint spatial/spectral domains. The magnitude of the response at each sampled location (x, y) for spectral band b contains rich information about the signal variances in the local region. Each pixel can be well represented by the rich information extracted by Gabor wavelets. A feature selection and fusion process has also been developed to reduce the redundancy among Gabor features and make the fused feature more discriminative. The proposed approach was fully tested on two real-world hyperspectral data sets, i.e., the widely used Indian Pine site and Kennedy Space Center. The results show that our method achieves as high as 96.04% and 95.36% accuracies, respectively, even when only few samples, i.e., 5% of the total samples per class, are labeled.
机译:高光谱图像中可用的丰富信息不仅带来了巨大的机会,而且给材料分类带来了巨大挑战。区分功能对于系统实现准确而强大的性能似乎至关重要。在本文中,我们提出了一种基于3-D Gabor小波的方法,用于基于像素的高光谱图像分类。首先设计一组具有不同频率和方向的复杂Gabor小波,以提取空间,频谱和联合空间/光谱域中的信号方差。频谱带b的每个采样位置(x,y)的响应幅度包含有关局部区域中信号变化的丰富信息。 Gabor小波提取的丰富信息可以很好地表示每个像素。还开发了一种特征选择和融合过程,以减少Gabor特征之间的冗余,并使融合特征更具区分性。在两个真实世界的高光谱数据集上,即在广泛使用的印度松站和肯尼迪航天中心上,对提出的方法进行了全面测试。结果表明,即使只标记了很少的样本,即每类总样本的5%,我们的方法也分别达到了96.04%和95.36%的准确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号