首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Retrieval of Canopy Closure and LAI of Moso Bamboo Forest Using Spectral Mixture Analysis Based on Real Scenario Simulation
【24h】

Retrieval of Canopy Closure and LAI of Moso Bamboo Forest Using Spectral Mixture Analysis Based on Real Scenario Simulation

机译:基于真实场景模拟的光谱混合分析反演毛竹林冠层关闭和LAI

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the retrievals of the canopy closure and leaf area index (LAI) of the Moso bamboo forest from the Landsat Thematic Mapper data using a constrained linear spectral unmixing method. A new approach for endmember collection based on the real scenario simulation of the Moso bamboo forest is developed. Four fraction images (i.e., sunlit canopy, shaded canopy, sunlit background, and shaded background) are calculated and used to develop the canopy closure and LAI. The results show that the predicted crown closure, which was inverted from the sunlit and shaded canopies, has a good agreement with the observed crown closure $(R^{2} = 0.725)$. The accuracy assessment indicates that the root mean square error (rmse) and the relative root mean square error (rmse_r) are 10% and 13.37% for the predicted crown closure, respectively. The LAI has the highest correlation coefficient with the shaded background, and it can be fitted by an exponential model $(R^{2} = 0.497)$. The linear relationship between the predicted and observed LAI values is significant at a level of 99% ($P < 0.01$ and $R^{2} = 0.459$), and the LAI can be predicted by the exponential model.
机译:本文使用约束线性光谱分解方法研究了从Landsat专题测绘仪数据中获取毛竹林冠层闭合度和叶面积指数(LAI)的方法。提出了一种基于真实场景模拟的毛竹林最终成员收集的新方法。计算四个分数图像(即,日光篷,阴影篷,日光背景和阴影背景),并将其用于展开篷盖和LAI。结果表明,从阳光照射和阴影遮篷中反转的预测冠冠闭合度与观测到的冠冠闭合度$(R ^ {2} = 0.725)$具有良好的一致性。精度评估表明,对于预测的牙冠闭合度,均方根误差(rmse)和相对均方根误差(rmse_r)分别为10%和13.37%。 LAI与阴影背景的相关系数最高,并且可以由指数模型$(R ^ {2} = 0.497)$拟合。 LAI预测值和观测值之间的线性关系在99%的水平上具有显着意义($ P <0.01 $和$ R ^ {2} = 0.459 $),并且LAI可以通过指数模型进行预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号