首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Satellite Remote Sensing and Hydrologic Modeling for Flood Inundation Mapping in Lake Victoria Basin: Implications for Hydrologic Prediction in Ungauged Basins
【24h】

Satellite Remote Sensing and Hydrologic Modeling for Flood Inundation Mapping in Lake Victoria Basin: Implications for Hydrologic Prediction in Ungauged Basins

机译:维多利亚湖盆地洪水泛滥成象的卫星遥感和水文建模:对无塞盆地的水文预报的启示

获取原文
获取原文并翻译 | 示例

摘要

Floods are among the most catastrophic natural disasters around the globe impacting human lives and infrastructure. Implementation of a flood prediction system can potentially help mitigate flood-induced hazards. Such a system typically requires implementation and calibration of a hydrologic model using in situ observations (i.e., rain and stream gauges). Recently, satellite remote sensing data have emerged as a viable alternative or supplement to in situ observations due to their availability over vast ungauged regions. The focus of this study is to integrate the best available satellite products within a distributed hydrologic model to characterize the spatial extent of flooding and associated hazards over sparsely gauged or ungauged basins. We present a methodology based entirely on satellite remote sensing data to set up and calibrate a hydrologic model, simulate the spatial extent of flooding, and evaluate the probability of detecting inundated areas. A raster-based distributed hydrologic model, Coupled Routing and Excess STorage (CREST), was implemented for the Nzoia basin, a subbasin of Lake Victoria in Africa. Moderate Resolution Imaging Spectroradiometer Terra-based and Advanced Spaceborne Thermal Emission and Reflection Radiometer-based flood inundation maps were produced over the region and used to benchmark the distributed hydrologic model simulations of inundation areas. The analysis showed the value of integrating satellite data such as precipitation, land cover type, topography, and other products along with space-based flood inundation extents as inputs to the distributed hydrologic model. We conclude that the quantification of flooding spatial extent through optical sensors can help to calibrate and evaluate hydrologic models and, hence, potentially improve hydrologic prediction and flood management strategies in ungauged catchments.
机译:洪水是影响人类生活和基础设施的全球最严重的自然灾害之一。洪水预报系统的实施可能有助于减轻洪水造成的危害。这样的系统通常需要使用原位观测(即雨量计和水位计)来实施和校准水文模型。近来,由于卫星遥感数据可在广大的未开垦地区获得,因此可作为实地观测的可行替代方案或补充。这项研究的重点是将最佳可用的卫星产品整合到分布式水文模型中,以表征稀疏测量或未扩张盆地上洪水泛滥的空间范围和相关危害。我们提出一种完全基于卫星遥感数据的方法,以建立和校准水文模型,模拟洪水的空间范围以及评估检测淹没区域的可能性。针对非洲维多利亚湖的一个子盆地恩佐亚盆地,实施了基于栅格的分布式水文模型,即耦合路由和超额存储(CREST)。在该区域内制作了中分辨率成像分光辐射计,基于Terra的和先进的星载热发射与反射辐射计的洪水淹没图,并将其用于对淹没区域的分布式水文模型模拟进行基准测试。分析表明,整合卫星数据(如降水,土地覆盖类型,地形和其他产品)以及基于天基的洪水淹没程度作为分布式水文模型输入的价值。我们得出的结论是,通过光学传感器对洪水空间范围进行量化可以帮助校准和评估水文模型,因此有可能改善无水集水区的水文预测和洪水管理策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号