首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A Scale-Synthesis Method for High Spatial Resolution Remote Sensing Image Segmentation
【24h】

A Scale-Synthesis Method for High Spatial Resolution Remote Sensing Image Segmentation

机译:一种高空间分辨率遥感影像分割的尺度综合方法

获取原文
获取原文并翻译 | 示例

摘要

Multiscale segmentation is always needed to extract semantic meaningful objects for object-based remote sensing image analysis. Choosing the appropriate segmentation scales for distinct ground objects and intelligently combining them together are two crucial issues to get the appropriate segmentation result for target applications. With respect to these two issues, this paper proposes a simple scale-synthesis method which is highly flexible to be adjusted to meet the segmentation requirements of varying image-analysis tasks. The main idea of this method is to first divide the whole image area into multiple regions; each region consisted of ground objects that have similar optimal segmentation scale. Then, synthesize the suboptimal segmentations of each region to get the final segmentation result. The result is the combination of suboptimal scales of objects and is therefore more coherent to ground objects. To validate this method, the land-cover-category map is used to guide the scale synthesis of multiscale image segmentations for the Quickbird-image land-use classification. First, the image is coarsely divided into multiple regions; each region belongs to a certain land-cover category. Then, multiscale-segmentation results are generated by the Mumford–Shah function based region-merging method. For each land-cover category, the optimal segmentation scale is selected by the supervised segmentation-accuracy-assessment method. Finally, the optimal scales of segmentation results are synthesized under the guide of land-cover category. It is proved that the proposed scale-synthesis method can generate a more accurate segmentation result that benefits the latter classification. The land-use-classification accuracy reaches to 77.8%.
机译:始终需要多尺度分割来提取语义有意义的对象,以进行基于对象的遥感图像分析。为不同的地面对象选择合适的分割比例并将它们智能地组合在一起是两个关键问题,以获得针对目标应用的合适分割结果。针对这两个问题,本文提出了一种简单的比例尺合成方法,该方法具有很高的灵活性,可以进行调整以满足不同图像分析任务的分割要求。这种方法的主要思想是首先将整个图像区域划分为多个区域;每个区域由具有相似最佳分割比例的地面物体组成。然后,综合每个区域的次优分割,以获得最终的分割结果。结果是物体的次最佳比例的组合,因此与地面物体的连贯性更高。为了验证该方法,土地覆盖物类别图用于指导Quickbird图像土地利用分类的多尺度图像分割的尺度综合。首先,将图像粗略地分为多个区域;每个地区都属于某个土地覆被类别。然后,通过基于Mumford-Shah函数的区域合并方法生成多尺度分段结果。对于每个土地覆盖类别,通过有监督的分割精度评估方法选择最佳分割规模。最后,在土地覆盖类别的指导下,综合了分割结果的最优尺度。实践证明,提出的尺度综合方法可以产生更准确的分割结果,有利于后者的分类。土地利用分类精度达到77.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号