首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Quantitative Restoration for MODIS Band 6 on Aqua
【24h】

Quantitative Restoration for MODIS Band 6 on Aqua

机译:Aqua上MODIS Band 6的定量还原

获取原文
获取原文并翻译 | 示例

摘要

Due to the harsh conditions of space, the detectors within satellite-based multispectral imagers are always at risk of damage or failure. In particular, 15 out of the 20 detectors that produce the 1.6- $muhbox{m}$ band 6 of Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua are either dead or noisy. In this paper, we describe a quantitative image restoration (QIR) algorithm that is able to accurately estimate and restore the data lost due to multiple-detector failure. The small number of functioning detectors is used to train a restoration function that is based on a multivariate regression using the information in a spatial–spectral window around each restored pixel. The information from other spectral bands allows QIR to perform well even when standard image interpolation breaks down due to large contiguous sections of the image being missing, as is the case for MODIS band 6 on Aqua. We present a comprehensive evaluation of the QIR algorithm by simulating the Aqua damage using the working 1.6- $muhbox{m}$ band of MODIS on Terra and then comparing the QIR restoration to the original (unbroken) Terra image. We also compare our results with other researchers' prior work that has been based on the assumption that band 6 could be approximated well solely as a function of the related band 7. We present empirical evidence that there is information in the other 500- and 250-m bands, excluding bands 6 and 7, that can inform the estimation of missing band 6 data. We demonstrate superior performance of QIR over previous algorithms as reflected by a reduced root-mean-square-error evaluation. The QIR algorithm may also be adapted to other cases and provides a powerful and general algorithm to mitigate the risks of detector damage in multispectral remote sensing.
机译:由于恶劣的太空条件,基于卫星的多光谱成像仪中的探测器始终存在损坏或故障的风险。特别是,在Aqua上产生中分辨率成像光谱仪(MODIS)的1.6-muhbox {m} $频段6的20个检测器中,有15个要么死掉要么嘈杂。在本文中,我们描述了一种定量图像恢复(QIR)算法,该算法能够准确估计和恢复由于多检测器故障而造成的数据丢失。少数功能正常的检测器用于训练恢复功能,该功能基于多元回归,使用围绕每个恢复像素的空间光谱窗口中的信息进行多元回归。来自其他光谱带的信息使QIR表现良好,即使标准图像插值由于图像的大连续部分丢失而导致故障,例如Aqua的MODIS波段6的情况。我们通过在Terra上使用MODIS的工作1.6- $ muhbox {m} $波段模拟水族损伤,然后将QIR恢复与原始(未破坏的)Terra图像进行比较,来对QIR算法进行全面评估。我们还将我们的结果与其他研究人员的先前工作进行了比较,这些工作是基于这样的假设,即仅仅可以根据相关频段7很好地近似频段6。我们提供了经验证据,表明其他500-和250中存在信息-m个频带(不包括频带6和7),可以通知丢失的频带6数据的估计。通过减少均方根误差评估,我们证明了QIR优于以前的算法。 QIR算法也可以适用于其他情况,并提供强大而通用的算法来减轻多光谱遥感中检测器损坏的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号