首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images
【24h】

A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images

机译:自动和无监督地检测多时相影像中多个变化的框架

获取原文
获取原文并翻译 | 示例

摘要

The detection of multiple changes (i.e., different kinds of change) in multitemporal remote sensing images is a complex problem. When multispectral images having $B$ spectral bands are considered, an effective solution to this problem is to exploit all available spectral channels in the framework of supervised or partially supervised approaches. However, in many real applications, it is difficult/impossible to collect ground truth information for either multitemporal or single-date images. On the opposite, unsupervised methods available in the literature are not effective in handling the full information present in multispectral and multitemporal images. They usually consider a simplified subspace of the original feature space having small dimensionality and, thus, characterized by a possible loss of change information. In this paper, we present a framework for the detection of multiple changes in bitemporal and multispectral remote sensing images that allows one to overcome the limits of standard unsupervised methods. The framework is based on the following: 1) a compressed yet efficient 2-D representation of the change information and 2) a two-step automatic decision strategy. The effectiveness of the proposed approach has been tested on two bitemporal and multispectral data sets having different properties. Results obtained on both data sets confirm the effectiveness of the proposed approach.
机译:多时间遥感图像中的多个变化(即,不同种类的变化)的检测是一个复杂的问题。当考虑具有$ B $光谱带的多光谱图像时,此问题的有效解决方案是在有监督或部分有监督方法的框架内利用所有可用的光谱通道。但是,在许多实际应用中,很难/不可能为多时间或单日图像收集地面真实信息。相反,文献中可用的无监督方法不能有效地处理多光谱和多时间图像中存在的全部信息。他们通常考虑原始特征空间的简化子空间,该子空间具有较小的维数,因此可能会丢失更改信息。在本文中,我们提出了一种用于检测时空和多光谱遥感影像中多个变化的框架,该框架可以克服标准无监督方法的局限性。该框架基于以下内容:1)变更信息的压缩但高效的二维表示,以及2)两步自动决策策略。该方法的有效性已在两个具有不同属性的双时变和多光谱数据集上进行了测试。在两个数据集上获得的结果证实了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号