首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Ionospheric Artifacts in Simultaneous L-Band InSAR and GPS Observations
【24h】

Ionospheric Artifacts in Simultaneous L-Band InSAR and GPS Observations

机译:同时进行L波段InSAR和GPS观测的电离层伪像

获取原文
获取原文并翻译 | 示例

摘要

Phase artifacts in interferometric synthetic aperture radar (InSAR) images frequently degrade the interpretability of the phase and correlation signatures of terrain. Often, these distortions are attributed to spatially variable ionospheric propagation delays at two different SAR acquisition times. We present here L-band InSAR data from Iceland, California, and Hawaii. The California and Hawaii interferograms show no significant ionospheric artifacts, while the Iceland interferogram shows a maximum misregistration of three pixels in the azimuth direction, which leads to severe phase decorrelation artifacts in the InSAR image. We relate the misregistration of complex pixels seen in the interferograms to the gradient of the ionospheric total electron content (TEC) observed by global positioning system (GPS) data and confirm that indeed the phase artifacts in the Iceland interferogram are due to dispersive ionospheric propagation rather than other decorrelation factors such as neutral atmospheric delays. We develop a method to measure the spatial TEC variation at synthetic aperture length scales using dual-frequency GPS carrier phase data. We solve for the GPS data ambiguities using a low-resolution ionosphere reference derived from either available ionospheric observations or the GPS carrier phase data themselves. GPS observations show directly the level of ionospheric variability, and the spatial TEC gradient as observed by GPS predicts the misregistration of complex pixels in interferograms in all three areas. This confirmation of the cause of the image artifacts suggests that they can be routinely corrected from the InSAR data alone, provided that the sensor measures the change in TEC along the radar swath.
机译:干涉式合成孔径雷达(InSAR)图像中的相位伪像经常会降低地形的相位和相关特征的可解释性。通常,这些失真归因于在两个不同的SAR采集时间的空间可变电离层传播延迟。我们在这里展示来自冰岛,加利福尼亚和夏威夷的L波段InSAR数据。加利福尼亚和夏威夷干涉图显示没有明显的电离层伪影,而冰岛干涉图显示在方位角方向上三个像素的最大重合失调,这导致InSAR图像中出现严重的相位解相关伪像。我们将干涉图中出现的复杂像素的重合失调与全球定位系统(GPS)数据观测到的电离层总电子含量(TEC)的梯度相关联,并确认冰岛干涉图中的相位伪影确实是由于分散的电离层传播所致比其他解相关因素(例如中性大气延迟)要高。我们开发了一种使用双频GPS载波相位数据在合成孔径长度尺度上测量空间TEC变化的方法。我们使用来自可用电离层观测值或GPS载波相位数据本身的低分辨率电离层参考来解决GPS数据的歧义。 GPS观测直接显示了电离层变化的水平,而GPS观测到的空间TEC梯度预测了这三个区域的干涉图中复杂像素的重合失调。对图像伪像原因的确认表明,只要传感器测量沿雷达测绘带的TEC的变化,就可以单独从InSAR数据中对它们进行常规校正。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号