首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A Target Discrimination Methodology Utilizing Wavelet-Based and Morphological Feature Extraction With Metal Detector Array Data
【24h】

A Target Discrimination Methodology Utilizing Wavelet-Based and Morphological Feature Extraction With Metal Detector Array Data

机译:一种基于小波的形态学特征提取与金属探测器阵列数据的目标识别方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a methodology for target discrimination utilizing wavelet-based and morphological feature extraction is proposed. The proposed methodology is implemented into a landmine classification decision system utilizing metal detector array data as input. The classification performances of a number of feature vectors composed of different combinations of feature elements are assessed. This is conducted using a Fuzzy ARTMAP neural network classifier and majority voting decision fusion. The classification classes trialled during processing are target type and burial depth, both combined and individually. The majority of the results achieve correct classification percentages of above 80% both prior to and after decision fusion, with generally higher accuracies and lower misclassification percentages achieved after decision fusion.
机译:本文提出了一种基于小波和形态学特征提取的目标识别方法。利用金属探测器阵列数据作为输入,将所提出的方法实施到地雷分类决策系统中。评估由特征元素的不同组合组成的多个特征向量的分类性能。这是使用模糊ARTMAP神经网络分类器和多数表决决定融合进行的。在处理过程中试用的分类类别是目标类型和埋葬深度,两者可以组合使用,也可以单独使用。大多数结果在决策融合之前和之后都达到80%以上的正确分类百分比,而决策融合之后通常获得更高的准确性和更低的误分类百分比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号