首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Modeling and Prediction of Rainfall Using Radar Reflectivity Data: A Data-Mining Approach
【24h】

Modeling and Prediction of Rainfall Using Radar Reflectivity Data: A Data-Mining Approach

机译:利用雷达反射率数据进行降雨的建模和预测:一种数据挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

Rainfall affects local water quantity and quality. A data-mining approach is applied to predict rainfall in a watershed basin at Oxford, Iowa, based on radar reflectivity and tipping-bucket (TB) data. Five data-mining algorithms, neural network, random forest, classification and regression tree, support vector machine, and $k$-nearest neighbor, are employed to build prediction models. The algorithm offering the highest accuracy is selected for further study. Model I is the baseline model constructed from radar data covering Oxford. Model II predicts rainfall from radar and TB data collected at Oxford. Model III is constructed from the radar and TB data collected at South Amana (16 km west of Oxford) and Iowa City (25 km east of Oxford). The computation results indicate that the three models offer similar accuracy when predicting rainfall at current time. Model II performs better than the other two models when predicting rainfall at future time horizons.
机译:降雨会影响当地的水量和水质。基于雷达反射率和倾卸桶(TB)数据,采用数据挖掘方法来预测爱荷华州牛津的流域盆地的降雨量。五个数据挖掘算法,神经网络,随机森林,分类和回归树,支持向量机和最近邻$ k $被用来构建预测模型。选择提供最高准确性的算法以供进一步研究。模型I是根据涵盖牛津大学的雷达数据构建的基线模型。模型II根据牛津大学收集的雷达和结核病数据预测降雨。模型III是根据在南阿马纳(牛津以西16公里)和爱荷华城(牛津以东25公里)收集的雷达和结核病数据构建的。计算结果表明,当预测当前时间的降雨时,这三个模型具有相似的精度。当预测未来时间范围内的降雨时,模型II的性能优于其他两个模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号