首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Classification and Reconstruction From Random Projections for Hyperspectral Imagery
【24h】

Classification and Reconstruction From Random Projections for Hyperspectral Imagery

机译:高光谱影像随机投影的分类与重构

获取原文
获取原文并翻译 | 示例

摘要

There is increasing interest in dimensionality reduction through random projections due in part to the emerging paradigm of compressed sensing. It is anticipated that signal acquisition with random projections will decrease signal-sensing costs significantly; moreover, it has been demonstrated that both supervised and unsupervised statistical learning algorithms work reliably within randomly projected subspaces. Capitalizing on this latter development, several class-dependent strategies are proposed for the reconstruction of hyperspectral imagery from random projections. In this approach, each hyperspectral pixel is first classified into one of several pixel groups using either a conventional supervised classifier or an unsupervised clustering algorithm. After the grouping procedure, a suitable reconstruction method, such as compressive projection principal component analysis, is employed independently within each group. Experimental results confirm that such class-dependent reconstruction, which employs statistics pertinent to each class as opposed to the global statistics estimated over the entire data set, results in more accurate reconstructions of hyperspectral pixels from random projections.
机译:部分由于新兴的压缩传感范式,人们对通过随机投影进行降维越来越感兴趣。预期具有随机投影的信号采集将显着降低信号传感成本;此外,已经证明,有监督的和无监督的统计学习算法在随机投影的子空间中都能可靠地工作。利用后一种发展,提出了几种基于类的策略,用于从随机投影重建高光谱图像。在这种方法中,首先使用常规的监督分类器或无监督的聚类算法将每个高光谱像素分为几个像素组之一。在分组过程之后,在每个组中独立采用合适的重建方法,例如压缩投影主成分分析。实验结果证实,这种与类有关的重构采用了与每个类有关的统计信息,而不是对整个数据集进行估计的全局统计信息,可以从随机投影中更准确地重构高光谱像素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号