首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A New Technique Using Infrared Satellite Measurements to Improve the Accuracy of the CALIPSO Cloud-Aerosol Discrimination Method
【24h】

A New Technique Using Infrared Satellite Measurements to Improve the Accuracy of the CALIPSO Cloud-Aerosol Discrimination Method

机译:利用红外卫星测量提高CALIPSO云气溶胶识别方法精度的新技术

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop a new technique called the brightness temperature difference cloud and aerosol discrimination algorithm (BTD CAD) that uses thermal infrared satellite measurements to improve the accuracy of the cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO) CAD algorithm. It has been shown that the CALIPSO CAD algorithm can misclassify dense dust as cloud because the CALIPSO two-wavelength backscatter lidar operates at 532 and 1064 nm where very similar scattering properties are known to exist between dense dust and cloud. Therefore, we use the 11 and 12 $muhbox{m}$ thermal infrared channels from both the moderate resolution imaging spectroradiometer (MODIS) and the spinning enhanced visible and infrared imager (SEVIRI), which are very sensitive to dust concentration, in order to reduce the frequency of the dust misclassifications encountered by the CALIPSO CAD algorithm. For the two Saharan dust events presented in this paper, both the MODIS and SEVIRI BTD CAD techniques performed well but the MODIS BTD CAD correctly reclassified more CALIPSO CAD misclassifications as dust. After applying both techniques to all the daytime CALIPSO transects over North Africa during June 2007, the MODIS and SEVIRI BTD CAD increased the total number of detected aerosol layers by approximately 10% and 4%, respectively. Even though the Version 3 (V3) CAD algorithm is significantly more accurate in deciphering between dense dust and clouds than the Version 2 algorithm, the V3 still showed some dust misclassifications among the case studies. Thus, the BTD CAD technique can help reduce the frequency of dust misclassifications encountered by the V3 CAD algorithm.
机译:在本文中,我们开发了一种称为亮度温度差云和气溶胶判别算法(BTD CAD)的新技术,该技术使用热红外卫星测量来提高云气溶胶激光雷达和红外探路卫星观测(CALIPSO)CAD算法的准确性。已经显示,CALIPSO CAD算法可以将浓尘分类为云,这是因为CALIPSO两波长反​​向散射激光雷达在532和1064 nm处工作,已知在浓尘和云之间存在非常相似的散射特性。因此,我们使用来自中分辨率成像光谱仪(MODIS)和旋转增强型可见光和红外成像仪(SEVIRI)的11和12个muhbox {m} $热红外通道,它们对粉尘浓度非常敏感,以便减少CALIPSO CAD算法遇到的灰尘分类错误的频率。对于本文中介绍的两次撒哈拉尘埃事件,MODIS和SEVIRI BTD CAD技术均表现良好,但MODIS BTD CAD正确地将更多CALIPSO CAD错误归类为尘埃。在2007年6月将这两种技术应用于北非全天的CALIPSO横断面后,MODIS和SEVIRI BTD CAD分别将检测到的气溶胶层总数分别增加了约10%和4%。尽管版本3(V3)CAD算法在解密尘埃和云层方面比版本2算法明显更准确,但在案例研究中,V3仍显示出一些灰尘分类错误。因此,BTD CAD技术可以帮助减少V3 CAD算法遇到的灰尘分类错误的频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号