首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Semisupervised Local Discriminant Analysis for Feature Extraction in Hyperspectral Images
【24h】

Semisupervised Local Discriminant Analysis for Feature Extraction in Hyperspectral Images

机译:半监督局部判别分析用于高光谱图像特征提取

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel semisupervised local discriminant analysis method for feature extraction in hyperspectral remote sensing imagery, with improved performance in both ill-posed and poor-posed conditions. The proposed method combines unsupervised methods (local linear feature extraction methods and supervised method (linear discriminant analysis) in a novel framework without any free parameters. The underlying idea is to design an optimal projection matrix, which preserves the local neighborhood information inferred from unlabeled samples, while simultaneously maximizing the class discrimination of the data inferred from the labeled samples. Experimental results on four real hyperspectral images demonstrate that the proposed method compares favorably with conventional feature extraction methods.
机译:我们提出了一种新颖的半监督局部判别分析方法,用于高光谱遥感影像中的特征提取,在病态和不良态下均具有改进的性能。该方法将无监督方法(局部线性特征提取方法和有监督方法(线性判别分析))结合到一个没有任何自由参数的新颖框架中,其基本思想是设计一个最佳的投影矩阵,该矩阵可以保留从未标记样本推断出的局部邻域信息。 ,同时最大化从标记样本中推断出的数据的类别辨别力,在四个真实的高光谱图像上的实验结果表明,该方法与常规特征提取方法相比具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号