首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Probability Sampling Protocol for Thematic and Spatial Quality Assessment of Classification Maps Generated From Spaceborne/Airborne Very High Resolution Images
【24h】

Probability Sampling Protocol for Thematic and Spatial Quality Assessment of Classification Maps Generated From Spaceborne/Airborne Very High Resolution Images

机译:用于从星载/机载超高分辨率图像生成的分类图进行主题和空间质量评估的概率采样协议

获取原文

摘要

To deliver sample estimates provided with the necessary probability foundation to permit generalization from the sample data subset to the whole target population being sampled, probability sampling strategies are required to satisfy three necessary not sufficient conditions: 1) All inclusion probabilities be greater than zero in the target population to be sampled. If some sampling units have an inclusion probability of zero, then a map accuracy assessment does not represent the entire target region depicted in the map to be assessed. 2) The inclusion probabilities must be: a) knowable for nonsampled units and b) known for those units selected in the sample: since the inclusion probability determines the weight attached to each sampling unit in the accuracy estimation formulas, if the inclusion probabilities are unknown, so are the estimation weights. This original work presents a novel (to the best of these authors' knowledge, the first) probability sampling protocol for quality assessment and comparison of thematic maps generated from spaceborne/airborne very high resolution images, where: 1) an original Categorical Variable Pair Similarity Index (proposed in two different formulations) is estimated as a fuzzy degree of match between a reference and a test semantic vocabulary, which may not coincide, and 2) both symbolic pixel-based thematic quality indicators (TQIs) and sub-symbolic object-based spatial quality indicators (SQIs) are estimated with a degree of uncertainty in measurement in compliance with the well-known Quality Assurance Framework for Earth Observation (QA4EO) guidelines. Like a decision-tree, any protocol (guidelines for best practice) comprises a set of rules, equivalent to structural knowledge, and an order of presentation of the rule set, known as procedural knowledge. The combination of these two levels of knowledge makes an original protocol worth more than the sum of its parts. The several degrees of novelty of the proposed probability s- mpling protocol are highlighted in this paper, at the levels of understanding of both structural and procedural knowledge, in comparison with related multi-disciplinary works selected from the existing literature. In the experimental session, the proposed protocol is tested for accuracy validation of preliminary classification maps automatically generated by the Satellite Image Automatic Mapper (SIAM™) software product from two WorldView-2 images and one QuickBird-2 image provided by DigitalGlobe for testing purposes. In these experiments, collected TQIs and SQIs are statistically valid, statistically significant, consistent across maps, and in agreement with theoretical expectations, visual (qualitative) evidence and quantitative quality indexes of operativeness (OQIs) claimed for SIAM™ by related papers. As a subsidiary conclusion, the statistically consistent and statistically significant accuracy validation of the SIAM™ pre-classification maps proposed in this contribution, together with OQIs claimed for SIAM™ by related works, make the operational (automatic, accurate, near real-time, robust, scalable) SIAM™ software product eligible for opening up new inter-disciplinary research and market opportunities in accordance with the visionary goal of the Global Earth Observation System of Systems initiative and the QA4EO international guidelines.
机译:为了提供具有必要概率基础的样本估计,以允许从样本数据子集到被采样的整个目标人群进行泛化,需要概率采样策略来满足三个必要的不充分条件:1)所有包含概率均大于零要抽样的目标人群。如果某些采样单位的包含概率为零,则地图准确性评估不会代表要评估的地图中描绘的整个目标区域。 2)包含概率必须是:a)对于非采样单位已知,并且b)对于样本中选择的那些单元是已知的:由于包含概率决定了准确性估计公式中每个采样单元的权重,因此如果包含概率未知,估计权重也是如此。这项原始工作提出了一种新颖的(据作者所知,是第一个)概率采样协议,用于质量评估和比较从星载/机载超高分辨率图像生成的专题图,其中:1)原始的分类变量对相似性索引(以两种不同的形式提出)被估计为参考和测试语义词汇之间的模糊匹配程度(可能不一致),以及2)基于符号像素的主题质量指标(TQI)和次符号对象-根据著名的地球观测质量保证框架(QA4EO)指南,在估计测量过程中存在一定程度的不确定性的基础上,估算了基于的空间质量指标(SQI)。像决策树一样,任何协议(最佳实践指南)都包含一组等同于结构知识的规则,以及表示规则集的顺序(称为过程知识)。这两个知识水平的结合使原始协议的价值超过其各个部分的总和。与从现有文献中选出的相关多学科著作相比,本文在结构和程序知识的理解水平上重点介绍了所提出的概率抽样协议的新颖性。在实验环节中,对提议的协议进行了测试,以验证卫星图像自动映射器(SIAM™)软件产品从DigitalWorld的两幅WorldView-2图像和一张QuickBird-2图像中自动生成的初步分类图的准确性,以进行测试。在这些实验中,收集到的TQI和SQI在统计上是有效的,在统计意义上是一致的,并且在各个地图上都一致,并且与理论期望,相关论文声称的SIAM™的视觉(定性)证据和可操作性的定量质量指标(OQI)一致。作为辅助结论,此贡献中提出的SIAM™预分类图的统计一致性和统计意义上的准确性验证以及相关工作要求的SIAM™的OQI使得操作(自动,准确,近实时,强大,可扩展的SIAM™软件产品,符合全球地球观测系统系统计划和QA4EO国际准则的远景目标,有资格开拓新的跨学科研究和市场机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号