首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Modified Level Set Approach for Segmentation of Multiband Polarimetric SAR Images
【24h】

A Modified Level Set Approach for Segmentation of Multiband Polarimetric SAR Images

机译:一种改进的水平集分割多波段极化SAR图像的方法

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the application of a level set method for the automated multiphase segmentation of multiband and polarimetric synthetic aperture radar (SAR) images. The level set formulation is used to form an energy functional that includes the image statistical information defined on active contours. In addition to the classical Wishart/Gaussian distribution for locating region boundaries, edge information is incorporated into the energy functional to improve the performance of polarimetric data segmentation. An active contour model with an edge indicator is proposed by assuming that the image boundary term follows a Gibbs prior. An empirical parameter setting criterion is developed to ensure that the components of the energy functional are in proper proportion. We then investigate the multiphase extension for energy minimization, and we use a piecewise constant model to embed the proposed active contour model. Synthetic and real multiband polarimetric SAR data are used for verification. The experiments show that our method is superior to another level set method based on the Wishart/Gaussian distribution, in which SAR edge information is not included, particularly for discriminating among low-contrast regions. Furthermore, results also show that segmentation is improved when multiband data are used in the level set framework.
机译:本文研究了一种水平集方法在多波段极化合成孔径雷达(SAR)图像自动多相分割中的应用。水平集公式用于形成能量功能,其中包括在活动轮廓上定义的图像统计信息。除了用于定位区域边界的经典Wishart / Gaussian分布之外,边缘信息还被整合到能量函数中以改善极化数据分割的性能。通过假设图像边界项遵循吉布斯先验,提出了带有边缘指示符的主动轮廓模型。制定了经验参数设置标准,以确保能量功能的各个成分比例正确。然后,我们研究了用于能量最小化的多相扩展,并使用分段常数模型嵌入了提出的主动轮廓模型。合成的和实际的多频带极化SAR数据用于验证。实验表明,我们的方法优于另一种基于Wishart / Gaussian分布的水平集方法,该方法不包括SAR边缘信息,特别是在区分低对比度区域时。此外,结果还表明,在级别集框架中使用多频带数据时,分割效果得到改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号