首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Novel SOM-SVM-Based Active Learning Technique for Remote Sensing Image Classification
【24h】

A Novel SOM-SVM-Based Active Learning Technique for Remote Sensing Image Classification

机译:基于SOM-SVM的新型主动学习技术用于遥感图像分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel iterative active learning technique based on self-organizing map (SOM) neural network and support vector machine (SVM) classifier is presented. The technique exploits the properties of the SVM classifier and of the SOM neural network to identify uncertain and diverse samples, to include in the training set. It selects uncertain samples from low-density regions of the feature space by exploiting the topological properties of the SOM. This results in a fast convergence also when the available initial training samples are poor. The effectiveness of the proposed method is assessed by comparing it with several methods existing in the literature using a toy data set and a color image as well as real multispectral and hyperspectral remote sensing images.
机译:本文提出了一种基于自组织映射(SOM)神经网络和支持向量机(SVM)分类器的迭代主动学习技术。该技术利用SVM分类器和SOM神经网络的属性来识别不确定和多样化的样本,以包括在训练集中。它通过利用SOM的拓扑特性从特征空间的低密度区域中选择不确定的样本。当可用的初始训练样本很差时,这也会导致快速收敛。通过与玩具数据集和彩色图像以及真实的多光谱和高光谱遥感图像进行比较,将所提出的方法与文献中存在的几种方法进行比较,从而评估了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号