首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Bayesian Context-Dependent Learning for Anomaly Classification in Hyperspectral Imagery
【24h】

Bayesian Context-Dependent Learning for Anomaly Classification in Hyperspectral Imagery

机译:贝叶斯上下文相关学习在高光谱图像中的异常分类

获取原文
获取原文并翻译 | 示例

摘要

Many remote sensing applications involve the classification of anomalous responses as either objects of interest or clutter. This paper addresses the problem of anomaly classification in hyperspectral imagery (HSI) and focuses on robustly detecting disturbed earth in the long-wave infrared (LWIR) spectrum. Although disturbed earth yields a distinct LWIR signature that distinguishes it from the background, its distribution relative to clutter may vary over different environmental contexts. In this paper, a generic Bayesian framework is proposed for training context-dependent classification rules from wide-area airborne LWIR imagery. The proposed framework combines sparse classification models with either supervised or discriminative context identification to pool information across contexts and improve classification overall. Experiments are performed with data from a LWIR landmine detection system. Contexts are learned from endmember abundances extracted from the background near each detected anomaly. Classification performance is compared with single-classifier approaches using the same information as well as other baseline anomaly detectors from the literature. Results indicate that utilizing context for classifying anomalies in HSI could lead to more robust performance over varying terrain.
机译:许多遥感应用涉及将异常响应分类为关注对象或混乱对象。本文解决了高光谱图像(HSI)中的异常分类问题,并着重于在长波红外(LWIR)光谱中稳健地检测受干扰的地球。尽管受干扰的地球会产生明显的LWIR信号,从而将其与背景区分开,但其相对于杂波的分布可能会在不同的环境环境中发生变化。本文提出了一种通用的贝叶斯框架,用于训练来自广域机载LWIR图像的上下文相关分类规则。所提出的框架将稀疏分类模型与监督或区分性上下文识别相结合,以跨上下文合并信息并总体改善分类。实验是利用来自LWIR地雷探测系统的数据进行的。通过从每个检测到的异常附近的背景中提取的端成员丰富度来学习上下文。使用相同的信息以及文献中的其他基线异常检测器,将分类性能与单分类器方法进行比较。结果表明,利用上下文对HSI中的异常进行分类可以在变化的地形上带来更强大的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号